深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 36201 篇文献,本页显示第 1 - 20 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1 2025-12-11
Immunofixation electrophoresis image interpretation using transfer learning method
2026-Jan-30, Clinica chimica acta; international journal of clinical chemistry
研究论文 本研究利用迁移学习方法开发深度学习模型,以快速准确解读免疫固定电泳图像,减少诊断评估中的主观性 首次将迁移学习与YOLOv11架构应用于免疫固定电泳图像分类,提出两阶段与单步多类两种分类策略 模型在少数类别(如IgM-λ、轻链-κ)及视觉相似类别上表现较低,数据集需扩展以涵盖罕见模式 开发深度学习模型以自动化解读免疫固定电泳图像,提高诊断效率与一致性 免疫固定电泳图像 计算机视觉 浆细胞疾病 免疫固定电泳 CNN 图像 5226张免疫固定电泳图像 NA YOLOv11 准确率, 精确率, 召回率, F1分数, 混淆矩阵 NA
2 2025-12-11
Attention-based deep learning for immunoglobulin typing from electrophoresis and laboratory data
2026-Jan-30, Clinica chimica acta; international journal of clinical chemistry
研究论文 本文提出了一种基于注意力机制的多模态深度学习模型,用于从血清蛋白电泳图像和实验室数据中自动进行免疫球蛋白分型 首次开发了结合Sebia毛细管电泳系统图像和临床实验室参数的多模态深度学习模型,并引入注意力机制增强模型可解释性 模型在外部验证中表现良好,但可能仍需在更广泛的人群和临床环境中进一步验证 开发自动化工具以减少血清蛋白电泳免疫分型结果解读的劳动强度和观察者间差异 来自Sebia毛细管免疫分型系统的电泳图像及相关的临床实验室参数 数字病理学 NA 毛细管电泳 深度学习 图像, 实验室数据 内部验证集未明确样本数,外部验证使用200例独立队列病例 NA 基于注意力机制的深度学习框架 准确率, Cohen's Kappa, F1分数, 召回率 NA
3 2025-12-11
From wastewater to epidemiological insights: A systematic review of modeling strategies for infectious disease surveillance
2026-Jan-15, Water research IF:11.4Q1
综述 本文系统综述了利用废水监测数据进行传染病指标估计与预测的现有建模策略 首次对基于废水监测的传染病建模方法进行了全面分类与评估,并强调了模型可迁移性等关键方法论考量 模型本身存在局限性,废水数据具有固有缺陷,且分析流程中临床结果选择、变量可用性、时间对齐、数据预处理及结果可解释性等方面存在挑战 为利用废水数据进行流行病学监测开发稳健且可推广的系统提供参考框架 废水监测数据及其在传染病指标估计与预测中的应用 机器学习 传染病 废水监测 隔室模型, 回归模型, 机器学习, 深度学习 废水数据 NA NA NA NA NA
4 2025-12-11
Use of Artificial Intelligence in Recognition of Fetal Open Neural Tube Defect on Prenatal Ultrasound
2026-Jan, American journal of perinatology IF:1.5Q2
研究论文 本研究旨在通过深度学习模型比较正常胎儿与开放性神经管缺陷胎儿的轴向颅脑超声图像,并评估其在识别开放性神经管缺陷方面的预测准确性 首次应用深度学习卷积神经网络迁移学习模型(如EfficientNet B0、VGG16和Inception V3)于胎儿超声图像,以自动化识别开放性神经管缺陷,特别是在低中收入国家临床应用中显示出潜力 研究样本量相对较小(59例病例和116例对照),且仅基于轴向经丘脑超声图像,可能未涵盖所有胎儿神经管缺陷的超声表现变异 开发并评估深度学习模型在产前超声中识别胎儿开放性神经管缺陷的准确性和临床适用性 妊娠14至28周的胎儿,包括开放性神经管缺陷病例和正常对照组 计算机视觉 神经管缺陷 产前超声成像 CNN 图像 59例开放性神经管缺陷胎儿和116例正常胎儿 TensorFlow, Keras EfficientNet B0, VGG16, Inception V3 Cohen kappa分数, 准确率, AUROC, F1分数, 敏感性, 特异性 NA
5 2025-12-11
Predicting Significant Stenosis of Arteriovenous Access Through Wavelet Transform and Machine Learning on Sounds Recorded with an Electronic Stethoscope
2026-Jan, Annals of vascular surgery IF:1.4Q3
研究论文 本研究利用电子听诊器记录的声音信号,通过小波变换和卷积神经网络模型,预测动静脉通路显著狭窄 首次结合小波变换和深度学习技术,对动静脉通路狭窄进行自动识别,提高了诊断的客观性和准确性 样本量较小(30名患者),且仅针对严重狭窄(>50%)进行预测,对轻度狭窄的预测能力尚需进一步研究 开发一种基于声音信号的非侵入性方法,用于自动预测动静脉通路显著狭窄 终末期肾病患者动静脉通路的声音信号 机器学习 心血管疾病 小波变换 CNN 音频 30名终末期肾病患者,共40个音频测试数据样本 NA 卷积神经网络 灵敏度, 特异度, 准确率 NA
6 2025-12-11
Assessing the applicability of the soil and water assessment tool-deep learning hybrid model for predicting total nitrogen loads in a mixed agricultural watershed
2026-Jan, Journal of contaminant hydrology IF:3.5Q2
研究论文 本研究提出了一种SWAT-深度学习混合模型,用于预测混合农业流域的总氮负荷 开发了SWAT-LSTM和SWAT-GRU混合模型,利用未经校准的SWAT输出和降水数据,有效预测总氮负荷,避免了传统校准过程,显著提高了计算效率 研究未明确说明模型在其他类型流域或不同气候条件下的泛化能力,且可能依赖于特定流域的数据特征 评估深度学习模型在未经校准的SWAT输出基础上,能否有效预测上游子流域的总氮负荷,以替代资源密集的校准过程 混合农业流域的总氮负荷 机器学习 NA 深度学习 LSTM, GRU 模拟数据, 降水数据 NA NA LSTM, GRU NA NA
7 2025-12-11
Deep learning in acupuncture: A systematic review
2026-Jan, Artificial intelligence in medicine IF:6.1Q1
系统综述 本文系统综述了深度学习在针灸实践中的应用,总结了现有文献中的证据 首次对深度学习在针灸领域的应用进行系统性总结,涵盖了多个任务类型并识别了主要挑战 纳入研究存在数据规模小和模型不准确等局限性,且缺乏专门的人工智能研究质量评估工具 全面总结深度学习技术在针灸实践中的应用证据 针灸实践中的深度学习应用研究 机器学习 NA 深度学习 CNN, RNN, LSTM, BERT, FNN, YOLO 图像, 文本, 视频 27项研究,基于公共数据库或自收集数据集构建的自建数据集 NA CNN, RNN, LSTM, BERT, FNN, YOLO变体 偏移误差阈值, 归一化平均误差, 平均精度均值, 每秒帧数, 关键点正确百分比, 交并比 NA
8 2025-12-11
Deep learning identifies TP-41 for methylglyoxal scavenging in Alzheimer's treatment
2026, Theranostics IF:12.4Q1
研究论文 本研究开发了一个名为DeepMGO的深度学习模型,用于预测化合物的甲基乙二醛清除活性,并从中识别出TP-41作为阿尔茨海默病治疗的潜在候选药物 首次利用深度学习技术针对甲基乙二醛清除剂进行阿尔茨海默病治疗药物的开发 研究基于小鼠模型,尚未在人体中进行验证 开发深度学习模型以识别潜在的甲基乙二醛清除剂,用于阿尔茨海默病治疗 阿尔茨海默病相关的甲基乙二醛清除剂化合物 机器学习 阿尔茨海默病 深度学习 深度学习模型 化合物活性数据 660种化合物的2,262个甲基乙二醛清除活性测定数据 NA DeepMGO NA NA
9 2025-12-11
SingleStrip: learning skull-stripping from a single labeled example
2026, Data engineering in medical imaging : third MICCAI Workshop, DEMI 2025, held in conjunction with MICCAI 2025, Daejeon, South Korea, September 27, 2025, Proceedings. DEMI (Workshop) (3rd : 2025 : Taejon-si, Korea)
研究论文 本研究提出了一种结合领域随机化和自训练的3D头骨剥离网络训练方法,仅需单个标注样本即可实现有效分割 首次将领域随机化与基于自编码器重建误差的质量控制相结合,实现了仅需单个标注样本的3D头骨剥离网络训练 方法在极少数标注样本下验证,未在大规模多样本场景中测试,且自编码器训练依赖单个标注样本的质量 解决脑磁共振图像头骨剥离任务中标注数据稀缺的问题 脑磁共振成像(MRI)体积图像 医学图像分割 NA 磁共振成像(MRI) 卷积自编码器(AE),3D分割网络 3D体积图像 单个标注样本(扩展至未标注数据) NA 卷积自编码器 分割准确性 NA
10 2025-12-11
Predictive modelling and optimization of electrocoagulation for nitrate removal using deep learning: Toward intelligent and sustainable water treatment
2026-Jan, Journal of contaminant hydrology IF:3.5Q2
研究论文 本研究应用深度学习方法来优化电凝工艺,以去除合成废水中的硝酸盐,并评估其可持续性 开发了一种结合CNN和LSTM的混合模型,以同时利用空间特征提取和时间序列学习能力来建模复杂的电凝过程,并提出了一个优化系统设计以最大化去除效率、最小化能耗 研究基于合成废水进行,可能无法完全代表真实废水的复杂性;CNN-LSTM模型在交叉验证中表现略低于XGBoost,且统计检验显示差异处于临界非显著水平 优化电凝工艺以去除废水中的硝酸盐,并开发智能、可持续的水处理技术 合成废水中的硝酸盐 机器学习 NA 电凝 CNN, LSTM, XGBoost 实验参数数据(pH、浓度、电导率、电压、电流、反应时间) NA NA CNN-LSTM混合架构 MSE, RMSE, MAE, MAPE, R, 调整R NA
11 2025-12-11
Incorporating and quantifying deformable image registration uncertainties in dose accumulation: a feasibility study on the benefit of online adaptive therapy
2025-Dec-10, Physics in medicine and biology IF:3.3Q1
研究论文 本研究提出了一种概率框架,将可变形图像配准的不确定性纳入剂量累积中,并通过剂量-体积直方图带将其转化为临床相关指标,以探索在线自适应质子治疗的潜在益处 开发了一种概率框架,首次将DIR不确定性显式整合到剂量累积中,并生成可解释的DVH带以可视化不确定性 研究仅基于五名头颈癌患者的小样本队列,结果可能缺乏普适性 评估和量化可变形图像配准不确定性在剂量累积中的影响,以改进自适应质子治疗的工作流程 头颈癌患者的每日锥形束计算机断层扫描图像和剂量分布 医学影像分析 头颈癌 可变形图像配准, 深度学习, 锥形束计算机断层扫描 深度学习模型 医学影像 5名头颈癌患者,共157次每日锥形束计算机断层扫描 NA NA 剂量-体积直方图带, D98%改善 NA
12 2025-12-11
Deep Learning-Driven Discovery of Bee-Safe Isoxazoline Pesticide Candidates
2025-Dec-10, Journal of agricultural and food chemistry IF:5.7Q1
研究论文 本文开发了一种创新的深度学习模型,用于发现对蜜蜂安全的异恶唑啉类农药候选物 提出了一种结合图神经网络和残差网络的新架构,并利用新训练集增强,克服了现有预测平台对异恶唑啉类农药毒性评估的局限性 未明确提及具体的数据缺口或模型泛化能力的限制 开发一种准确评估异恶唑啉类农药对蜜蜂毒性的预测工具,以发现更安全的农药替代品 异恶唑啉类农药(如氟噻虫胺)及其对蜜蜂的毒性 机器学习 NA 深度学习 GNN, ResNet 化学结构数据 NA NA GGHT, ResNet NA NA
13 2025-12-11
Deep learning habitat radiomics based on ultrasound for predicting preoperative locally progression and postoperative recurrence risk of thyroid cancer: a multicenter study
2025-Dec-10, International journal of surgery (London, England)
研究论文 本研究开发了一种基于超声的深度学习栖息地放射组学模型,用于预测甲状腺癌的术前局部进展和术后复发风险 首次将深度学习栖息地放射组学应用于甲状腺癌超声图像,通过瘤内亚区分割和瘤周区域分析捕捉肿瘤空间异质性,并结合临床变量构建预测模型 研究为回顾性设计,需要更多样化临床环境和更长随访时间的前瞻性验证 开发预测甲状腺癌局部进展和复发风险的超声影像模型 甲状腺癌患者 数字病理学 甲状腺癌 超声成像 深度学习 超声图像 回顾性队列1881例(来自9个医疗中心),前瞻性验证队列130例 未明确说明 深度学习栖息地放射组学模型 AUC, Kaplan-Meier分析, Cox回归 未明确说明
14 2025-12-11
Benchmarking heterogeneous network-based methods for drug repurposing
2025-Dec-10, NPJ systems biology and applications IF:3.5Q1
研究论文 本研究系统地评估了十种基于异质网络的药物重定位方法在八个数据集上的性能 引入了两个新的药物-疾病数据集,并揭示了交叉验证策略对性能评估的重大影响 研究主要基于现有数据集,可能未涵盖所有生物相互作用类型 评估基于异质网络的药物重定位方法的可靠性和泛化能力 十种基于异质网络的药物重定位方法 机器学习 NA NA 矩阵分解, 矩阵补全, 推荐系统, 深度学习 异质网络数据 八个数据集(包括六个公开数据集和两个新数据集) NA NMF, NMF-PDR, NMF-DR, VDA-GKSBMF, BNNR, OMC, HGIMC, IBCF, LIBMF, DRDM AUC, AUPR NA
15 2025-12-11
Exploring the pathogenic mechanism of RNH1 in colorectal cancer based on eQTL, Multi-omics and deep learning
2025-Dec-10, Journal of applied genetics IF:2.0Q3
研究论文 本研究基于eQTL、多组学和深度学习探索RNH1在结直肠癌中的致病机制 首次将RNH1与双硫死亡和结直肠癌风险联系起来,并利用单细胞RNA测序、空间转录组测序和深度学习生存神经网络构建预后模型 研究主要基于生物信息学分析和体外验证,缺乏体内实验验证RNH1的具体功能机制 探索RNH1在结直肠癌中的致病机制及其作为生物标志物和治疗靶点的潜力 结直肠癌患者组织和细胞 机器学习 结直肠癌 eQTL, 单细胞RNA测序, 空间转录组测序, RNA测序, qPCR 深度学习生存神经网络 基因表达数据, 转录组数据, 单细胞数据, 空间转录组数据 结直肠癌患者癌组织和正常组织样本 NA DeepSurv 生存分析 NA
16 2025-12-11
Super-resolution deep learning reconstruction improves brain MRI quality and detection of metastases
2025-Dec-10, Japanese journal of radiology IF:2.9Q2
研究论文 本研究评估了超分辨率深度学习重建(SR-DLR)相较于传统深度学习重建(DLR)在脑转移瘤检测和图像质量提升方面的表现 首次在脑转移瘤检测中比较了超分辨率深度学习重建(SR-DLR)与传统深度学习重建(DLR),并证明SR-DLR在病灶检测性能和图像质量方面具有显著优势 研究为回顾性设计,样本量相对较小(47例患者),且仅基于单一MRI序列(对比增强3D全脑T1加权成像) 评估超分辨率深度学习重建(SR-DLR)在脑转移瘤检测和MRI图像质量改善方面的效果 脑转移瘤患者的对比增强3D全脑T1加权MRI图像 数字病理 脑转移瘤 MRI成像,深度学习重建 深度学习重建模型 医学图像(MRI) 47例连续患者,共检测到117个脑转移病灶 NA NA JAFROC分析,Wilcoxon符号秩检验,McNemar检验,配对t检验,半高全宽,边缘上升距离,边缘上升斜率,信噪比,对比噪声比 NA
17 2025-12-11
EEG motor imagery classification through a two-dimensional CNN-LSTM deep architecture and fuzzy decision-making
2025-Dec-10, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 本文提出了一种基于二维CNN-LSTM深度架构和模糊决策的EEG运动想象分类方法 结合了二维CNN-LSTM模型和Choquet模糊积分进行决策融合,以提升在噪声EEG条件下的分类可靠性 NA 开发一种鲁棒的深度学习框架,用于从原始EEG信号中自动检测运动想象 原始EEG信号 机器学习 NA STFT CNN, LSTM EEG信号 NA NA 二维CNN-LSTM 准确率 NA
18 2025-12-11
A deep learning system on monolithic implant-supported crown design: Evaluating AI-generated models against conventional software outputs
2025-Dec-10, Journal of prosthodontics : official journal of the American College of Prosthodontists
研究论文 本研究评估了一种基于Transformer的深度学习模型在生成单颗种植体支持冠(ISC)方面的有效性,并与传统软件生成的冠进行比较 首次将基于Transformer的深度学习模型(PoinTr架构)应用于种植体支持冠的自动化设计,相比传统软件,在轮廓、咬合形态和穿龈轮廓方面更接近技师设计 概念验证研究,样本量有限(311例),近中接触适应性在所有自动化组中仍不如技师设计冠 评估AI生成种植体支持冠的有效性,并与传统软件输出进行比较 单颗后牙第一磨牙区种植体支持冠的设计 计算机视觉 NA 深度学习 Transformer 数字印模图像 311例患者(291例用于训练,20例用于验证) NA PoinTr 整体轮廓偏差, 咬合形态差异, 近中接触, 穿龈轮廓 NA
19 2025-12-11
A Deep Learning Model for Efficient Nontargeted Screening of New Psychoactive Substances with Benchtop Nuclear Magnetic Resonance Devices
2025-Dec-10, Analytical chemistry IF:6.7Q1
研究论文 本研究提出了一种用于台式核磁共振设备的新型深度学习模型,用于高效非靶向筛查新型精神活性物质 提出了一种结合通道注意力增强架构、化学信息预处理以及对比预训练(将NMR谱与SMILES表示对齐)的深度学习模型,显著提升了低信噪比条件下的谱图特征提取能力 模型目前仅针对九种NPS类别进行分类,未明确说明模型在更广泛或未知物质上的泛化能力 开发一种能够利用低信噪比台式核磁共振数据进行高效、准确的新型精神活性物质非靶向筛查的方法 新型精神活性物质 机器学习 NA 核磁共振 深度学习模型 核磁共振谱图 NA NA 通道注意力增强架构 准确率 NA
20 2025-12-11
Fingerprint-Based Machine Learning for SARS-CoV-2 and MERS-CoV Mpro Inhibition: Highlighting the Potential of Bayesian Neural Networks
2025-Dec-10, Journal of chemical information and modeling IF:5.6Q1
研究论文 本研究利用指纹特征,通过机器学习方法预测SARS-CoV-2和MERS-CoV主要蛋白酶抑制剂的效力,并比较了传统机器学习模型与贝叶斯神经网络模型的性能 在低数据量条件下,首次将贝叶斯神经网络应用于SARS-CoV-2和MERS-CoV主要蛋白酶抑制剂的效力预测,并证明其优于随机森林和梯度提升等传统机器学习模型 研究基于有限的数据集进行,模型在更广泛化合物或不同靶点上的泛化能力尚未验证 开发并比较机器学习模型,以预测SARS-CoV-2和MERS-CoV主要蛋白酶抑制剂的效力 SARS-CoV-2和MERS-CoV的主要蛋白酶抑制剂 机器学习 COVID-19, MERS 分子指纹 随机森林, 梯度提升, 贝叶斯神经网络 化学结构数据 未公开的SARS-CoV-2和MERS-CoV主要蛋白酶抑制剂数据集 NA 贝叶斯神经网络 NA NA
回到顶部