深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 40562 篇文献,本页显示第 1 - 20 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1 2026-02-22
Detection and Classification of Peri-Implant Marginal Bone Loss in Cone-Beam Computed Tomography Using a Deep Learning Approach
2026-Apr, Clinical and experimental dental research IF:1.7Q3
研究论文 本研究评估了基于YOLOv8的深度学习模型在CBCT图像上自动检测和分级种植体周围边缘骨丢失的能力 首次将YOLOv8目标检测模型应用于CBCT图像中种植体周围边缘骨丢失的自动检测和分级 数据集规模有限,中度和重度病例的检测性能有所下降,需要进一步在多样化临床环境中验证 开发自动化工具以辅助CBCT图像中种植体周围边缘骨丢失的检测和分级 种植体周围边缘骨丢失 计算机视觉 种植体周围疾病 锥形束计算机断层扫描 CNN 图像 699张2D CBCT切片 PyTorch YOLOv8 准确率, 精确率, 召回率, F1分数, mAP@0.5, Kappa系数 NA
2 2026-02-22
Cutting-edge AI technologies in skin cancer applications
2026-Mar-31, Cancer letters IF:9.1Q1
综述 本文综述了人工智能(特别是多模态大语言模型和深度学习)在皮肤癌早期检测、个体化治疗和患者管理领域的最新进展与应用 强调通过多模态融合策略整合皮肤镜图像、组织病理学信息和基因数据库,以提取更丰富互补的特征,从而显著提高诊断准确性和鲁棒性,并探讨皮肤病学专用基础模型的重要性 面临数据质量和模型可解释性相关的挑战,肿瘤异质性和免疫逃逸仍是未解决的主要问题 总结人工智能在皮肤癌领域的应用进展,重点关注早期检测、个体化治疗和患者管理 皮肤癌(包括多种亚型)及其诊断、治疗和药物开发过程 计算机视觉, 自然语言处理, 机器学习 皮肤癌 多模态融合策略 深度学习, 复杂神经网络, 多模态大语言模型 (如GPT, Med-PaLM) 皮肤镜图像, 组织病理学信息, 基因数据库 NA NA NA 诊断准确性, 鲁棒性 NA
3 2026-02-22
Colorectal mucosal exposure area assessment using artificial intelligence: a multicenter prospective observational study
2026-Mar, Endoscopy IF:11.5Q1
研究论文 本研究提出了一种新的结肠镜检查质量控制指标——累积结直肠黏膜暴露面积(CCMEA),并基于深度学习构建了CCMEA系统,通过多中心前瞻性观察研究验证了该指标的有效性 首次提出CCMEA作为结肠镜检查质量控制的量化指标,并开发了基于深度学习的自动化评估系统 研究为观察性设计,未进行随机对照试验;样本量相对有限(510例);阈值确定基于特定腺瘤检出率(25%) 开发并验证一种用于评估结肠镜检查质量的客观指标 接受结肠镜检查的患者 数字病理学 结直肠癌 结肠镜检查 深度学习 内窥镜视频图像 510名参与者(合格组270例,不合格组240例) 未明确说明 ResNet50, UNet++ 腺瘤检出率(ADR), 息肉检出率, 调整后比值比(aOR), 调整后发生率比(aIRR) NA
4 2026-02-22
Classification of major depressive disorder using vertex-wise brain sulcal depth, curvature, and thickness with a deep and a shallow learning model
2026-Mar, Molecular psychiatry IF:9.6Q1
研究论文 本研究使用深度学习模型DenseNet和浅层学习模型SVM,基于顶点级脑沟深度、曲率和厚度特征,对重度抑郁症(MDD)患者和健康对照(HC)进行分类 首次在全球代表性多站点ENIGMA-MDD数据上,整合顶点级皮质形态特征,并比较深度学习和浅层学习模型在MDD分类中的性能 分类性能接近随机水平(平衡准确率DenseNet: 51%;SVM: 53%),表明当前特征和分类器组合无法有效区分MDD和HC,且存在站点效应影响 探索利用脑形态特征和机器学习模型进行重度抑郁症(MDD)自动分类的可行性 重度抑郁症(MDD)患者和健康对照(HC) 神经影像分析 重度抑郁症 神经影像分析 DenseNet, SVM 脑形态特征数据(顶点级脑沟深度、曲率、厚度) 7012名参与者(2772名MDD患者和4240名HC),来自31个站点 NA DenseNet 平衡准确率 NA
5 2026-02-22
Leveraging Artificial Intelligence to Transform Thoracic Radiology for Lung Nodules and Lung Cancer: Applications, Challenges, and Future Directions
2026-Mar-01, Journal of thoracic imaging IF:2.0Q3
综述 本文回顾了人工智能在胸部放射学(特别是肺结节和肺癌领域)的应用历史、现状、挑战及未来方向 系统梳理了从早期基于临床知识的AI方法到深度学习、Transformer架构的演进路径,并探讨了基础模型、多模态AI和多组学方法在肺癌领域的前沿应用 作为综述文章,未提出新的具体模型或实验数据,主要基于现有文献进行归纳分析 总结人工智能在胸部放射学(肺结节与肺癌)中的应用进展,并探讨未来发展方向 肺结节与肺癌相关的医学影像及临床数据 数字病理学 肺癌 医学影像分析 深度学习, Transformer 医学影像 NA NA Transformer NA NA
6 2026-02-22
Real-World Prospective Validation and Economic Evaluation of Deep Learning- Based Diabetic Retinopathy Detection From Fundus Photographs: A Systematic Review and Meta-analysis
2026-Mar-01, Diabetes care IF:14.8Q1
系统综述与荟萃分析 本研究通过系统综述和荟萃分析,评估了基于深度学习的糖尿病视网膜病变检测系统在真实世界前瞻性验证中的诊断性能和经济性 首次系统性地综合了深度学习糖尿病视网膜病变检测系统在真实世界前瞻性环境中的验证证据,并评估了其在不同国家背景下的经济可行性 缺乏评估多种糖尿病视网膜病变严重程度或糖尿病性黄斑水肿的研究,限制了亚组分析的能力;低收入国家的研究不足,限制了相关洞察 评估基于深度学习的糖尿病视网膜病变检测系统在不同国家实施的前瞻性验证可行性和经济证据 使用眼底照片进行糖尿病视网膜病变检测的深度学习系统 数字病理学 糖尿病视网膜病变 深度学习 深度学习模型 眼底照片 47项研究纳入荟萃分析 NA NA 受试者工作特征曲线下面积 NA
7 2026-02-22
Artificial Intelligence in Cardiovascular MRI: From Imaging to Biomechanics and Diagnosis
2026-Mar-01, Journal of thoracic imaging IF:2.0Q3
综述 本文综述了人工智能,特别是深度学习,如何重塑心血管磁共振成像的各个方面,从规划、采集到重建、分析和临床报告生成 系统性地总结了近10年深度学习在心血管MRI全流程(从成像到生物力学与诊断)中的最新进展与概念演变 作为一篇综述文章,未提出新的具体模型或方法,主要聚焦于现有研究的总结与展望 探讨人工智能技术如何提升心血管磁共振成像的效率、精度及临床决策支持能力 心血管磁共振成像技术及其在心血管疾病诊疗中的应用 计算机视觉, 机器学习 心血管疾病 磁共振成像 深度学习 医学影像 NA NA NA NA NA
8 2026-02-22
AI in ethnopharmacology, the pharmaceutical industry, and its applications
2026-Mar, Annales pharmaceutiques francaises IF:1.0Q4
综述 本文综述了人工智能在民族药理学、制药工业及其应用中的角色,特别是在药物发现、质量控制和可持续发展方面的作用 将人工智能技术(如机器学习、深度学习和自然语言处理)整合到民族药理学实践中,用于数据挖掘、分子对接、生物活性预测和临床验证,以提升传统药物研究的效率和证据基础 标准化和验证任务以及监管框架仍需改进 探讨人工智能如何增强民族药理学实践,促进药物发现和传统知识与现代制药科学的融合 民族药理学中的传统知识、药用植物、药物化合物以及制药工业应用 自然语言处理 NA 数据挖掘分析、分子对接系统、生物活性预测建模、临床验证过程、组学研究(基因组学、代谢组学、蛋白质组学) 机器学习, 深度学习 民族植物学记录、组学数据、临床数据 NA NA NA NA NA
9 2026-02-22
Quantitative CT and Artificial Intelligence in Chronic Lung Disease
2026-Mar-01, Journal of thoracic imaging IF:2.0Q3
综述 本文综述了定量CT和人工智能技术在慢性肺病(如COPD和ILD)诊断与管理中的应用、优势、挑战及未来方向 系统总结了基于密度和纹理特征的定量CT技术以及新兴的机器学习和深度学习方法在慢性肺病评估中的应用,并讨论了其在超越视觉评估和传统密度方法方面的鲁棒性和可重复性 文章指出了当前这些技术在临床应用中所面临的挑战和局限性,包括采纳障碍和待解决的问题 探讨定量CT和人工智能技术在慢性肺病(特别是COPD、ILD和肺移植/造血干细胞移植后的闭塞性细支气管炎综合征)的影像评估中的应用价值与发展方向 慢性阻塞性肺疾病(COPD)、纤维化性间质性肺疾病(ILD)以及肺/造血干细胞移植受者的闭塞性细支气管炎综合征患者 数字病理学 肺癌 CT成像,定量CT分析 机器学习,深度学习 CT图像 NA NA NA NA NA
10 2026-02-22
Artificial Intelligence in Coronary Computed Tomography: Current Applications, Future Potentials, and Real-world Challenges
2026-Mar-01, Journal of thoracic imaging IF:2.0Q3
综述 本文综述了人工智能在冠状动脉计算机断层扫描(CT)成像中的当前应用、未来潜力及现实挑战 系统性地总结了AI在心脏CT成像全流程(从图像采集、重建到分析)中的最新进展,并前瞻性地探讨了生成式AI、大语言模型和数字孪生等前沿技术在心血管精准医疗中的革命性潜力 面临数据多样性与标准化不足、模型可解释性有限以及监管审批流程复杂等挑战,阻碍了AI技术在临床实践中的全面整合 探讨人工智能技术在冠状动脉CT成像领域的应用现状、发展前景及面临的现实障碍,以推动心血管精准医疗的发展 冠状动脉疾病(CAD)的CT成像数据、临床数据及实验室数据 医学影像分析, 机器学习 心血管疾病 心脏计算机断层扫描(CT)成像 深度学习, 机器学习, 生成式AI, 大语言模型(LLMs) 医学影像(CT图像), 临床数据, 实验室数据 NA NA NA NA NA
11 2026-02-22
Deep learning architectures for modeling and forecasting stroke cases in Ghana
2026-Mar, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
研究论文 本研究利用深度学习模型对加纳的卒中病例进行建模与预测,以支持数据驱动的公共卫生策略 在加纳卒中预测中首次应用并比较了多种深度学习架构,包括LSTM、BLSTM、ConvLSTM和BConvLSTM,并纳入糖尿病患病率作为协变量 研究仅使用了月度卒中病例数据,可能未涵盖所有相关风险因素;模型在ConvLSTM和BConvLSTM上表现不佳,表明架构选择需进一步优化 建模和预测加纳的卒中发病率,为公共卫生规划和干预提供数据支持 加纳的卒中病例数据 机器学习 卒中 NA LSTM, BLSTM, ConvLSTM, BConvLSTM 时间序列数据 2018年至2023年的月度卒中病例数据 Python, R LSTM, BLSTM, ConvLSTM, BConvLSTM MAE, MSE, RMSE, MAPE NA
12 2026-02-22
A Self-Supervised Foundation Model Based on Three-Dimensional Chest CT Scans for Lung Cancer Diagnosis and Prognosis Prediction
2026-Mar, Radiology. Imaging cancer
研究论文 本研究开发了一种基于三维胸部CT扫描的自监督基础模型(UCLIF),用于肺癌的诊断和预后预测 提出了首个基于大规模三维胸部CT扫描的自监督基础模型,通过对比掩码图像建模任务进行预训练,并在多个下游临床任务中验证了其优越性 研究为回顾性多中心研究,可能存在选择偏倚;模型在特定历史时间段(1958年至2019年)的数据上训练,可能无法完全代表当前临床实践 开发并评估一个用于肺癌临床任务的自监督胸部CT基础模型 肺癌患者的三维胸部CT扫描图像 数字病理学 肺癌 三维胸部CT扫描 自监督学习基础模型 三维医学图像(CT扫描) 预训练使用33,901个三维胸部CT扫描;下游评估涉及656名患者 NA UCLIF(Unified CT-Based Lung Cancer Imaging Foundation) 准确度, 敏感度, 特异度, AUC NA
13 2026-02-22
Impact of Annotation Level on Multisequence MRI Models for Preoperative Microvascular Invasion Prediction in Hepatocellular Carcinoma
2026-Mar, Radiology. Imaging cancer
研究论文 本研究评估了整合多模态数据的深度学习模型在预测肝细胞癌微血管侵犯方面的性能,并探讨了不同手动标注方法对模型性能的影响 首次系统比较了体素级掩码和边界框两种不同标注级别对多序列MRI模型预测肝细胞癌微血管侵犯性能的影响,并证明边界框标注在保持可比预测性能的同时显著提高了标注效率 本研究为回顾性研究,样本量相对有限(281例患者),且仅基于三个医疗中心的数据,可能存在选择偏倚 预测肝细胞癌术前微血管侵犯,并评估不同标注方法对深度学习模型性能的影响 肝细胞癌患者 数字病理 肝细胞癌 MRI 深度学习模型 多序列MRI图像 281例患者(来自三个医疗中心) NA NA AUC, 校准曲线, 决策曲线分析 NA
14 2026-02-22
Pediatric Personalized Deep Learning Models for Segmentation of Hepatoblastoma at CT and MRI
2026-Mar, Radiology. Imaging cancer
研究论文 本研究评估了成人训练模型在儿童肝母细胞瘤分割中的泛化能力,并开发了专门针对儿童CT和MRI影像训练的深度学习分割模型 开发了首个专门针对儿童肝母细胞瘤的深度学习分割模型,证明了针对特定人群(儿科)定制模型优于通用(成人)模型 研究数据来自单一临床试验(AHEP0731),模型性能可能受限于该特定数据集的分布 评估成人训练模型在儿科影像分割中的泛化能力,并开发针对儿科患者的专用分割模型 儿童肝母细胞瘤患者的CT和MRI影像 数字病理学 肝母细胞瘤 CT, MRI CNN 医学影像 CT数据集104名参与者,MRI数据集123名参与者 NA 3D U-Net Dice相似系数, 体积百分比误差 NA
15 2026-02-22
Deep Learning-Enabled Diabetic Retinopathy Screening: A Techno-Clinical Revolution or Just More Artificial Intelligence Hype?
2026-Mar-01, Diabetes care IF:14.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
16 2026-02-22
Feasibility of the Belun sleep platform for obstructive sleep apnea diagnosis: A pilot case series from India
2026-Mar-01, Lung India : official organ of Indian Chest Society IF:1.3Q4
研究论文 本研究评估了Belun Ring设备在印度人群中诊断阻塞性睡眠呼吸暂停的可行性,并与多导睡眠图进行对比 首次在印度人群中评估基于光电容积脉搏波描记法和深度学习的Belun Ring家庭睡眠呼吸暂停测试设备,作为多导睡眠图的替代方案 样本量小(仅6名成人),设备在50%的病例中错误分类OSA严重程度,主要低估中度疾病,限制了其诊断适用性 评估Belun Ring设备在资源有限环境中诊断阻塞性睡眠呼吸暂停的可行性和诊断性能 六名连续接受多导睡眠图检查的疑似阻塞性睡眠呼吸暂停的印度成人患者 数字病理学 阻塞性睡眠呼吸暂停 光电容积脉搏波描记法,深度学习分析 深度学习模型 生理信号数据 6名成人患者 NA NA 灵敏度,Pearson相关系数,呼吸暂停低通气指数,氧减指数 NA
17 2026-02-22
Exploring Global Aerosol Size Dynamics from 2001 to 2024 Using the Pretrained Remote sensing pIxel-based Spatial-teMporal Deep Neural Network
2026-Feb-21, Environmental science & technology IF:10.8Q1
研究论文 本研究提出了一种名为PRISM-DNN的深度学习框架,用于从2001年至2024年全球范围内反演细模态和粗模态气溶胶光学厚度 提出了结合无监督预训练(基于大量未标记卫星数据)和有监督微调(基于地基测量)的先进深度学习框架PRISM-DNN,显著提升了全球气溶胶尺寸分布反演的精度和稳定性 模型在训练时未包含某些额外地面网络的数据,尽管在这些网络上表现良好,但可能存在未完全覆盖的区域或条件 解决全球气溶胶尺寸分布(细模态和粗模态气溶胶光学厚度)反演的挑战,以更好地理解气溶胶对气候和空气质量的影响 全球范围内的气溶胶,特别是其细模态和粗模态的光学厚度 机器学习 NA 遥感,深度学习 深度神经网络 卫星遥感数据,地基测量数据 2001年至2024年的全球卫星数据及对应的地基测量数据(如AERONET网络) NA PRISM-DNN (Pretrained Remote sensing pIxel-based Spatial-teMporal Deep Neural Network) 相关系数 NA
18 2026-02-22
Features of B-mode ultrasound and contrast-enhanced ultrasound of carotid plaque based on deep learning enhance the prediction of vulnerable plaques associated with acute ischemic stroke
2026-Feb-21, European radiology IF:4.7Q1
研究论文 本研究开发了一种基于深度学习的AI模型,利用颈动脉斑块的B型超声和超声造影特征来预测急性缺血性卒中的风险 首次将深度学习AI模型与超声及超声造影特征结合,显著提升了急性缺血性卒中风险的预测性能,并展示了良好的泛化能力 研究为回顾性设计,且外部验证集样本量相对较小,可能影响结果的普遍适用性 开发并评估基于超声特征的AI模型,以预测颈动脉斑块相关的急性缺血性卒中风险 颈动脉斑块的超声及超声造影图像 计算机视觉 急性缺血性卒中 B型超声,超声造影 CNN 图像 923名患者(回顾性)用于训练和内部测试,143名患者(前瞻性)用于外部测试 PyTorch ResNet34 AUC NA
19 2026-02-22
Artificial intelligence for the prediction of synchronous and metachronous liver metastasis in colorectal cancer patients: a systematic review and meta-analysis
2026-Feb-21, Abdominal radiology (New York)
系统综述与荟萃分析 本文通过系统综述和荟萃分析评估了人工智能模型在预测结直肠癌患者同步性和异时性肝转移方面的性能 首次对AI模型(包括影像组学和深度学习)在预测结直肠癌肝转移方面的性能进行系统性评估和荟萃分析,整合了多种模型的敏感性和特异性数据 纳入研究的方法学和报告质量普遍较低(RQS平均分16.4/36),存在参考标准和指标测试领域的偏倚风险,研究间存在异质性 评估影像组学和深度学习模型能否准确预测结直肠癌患者的同步性和异时性肝转移 结直肠癌患者 医学影像分析 结直肠癌 影像组学特征提取,深度学习 影像组学模型,深度学习模型 医学影像数据 来自21项研究的患者数据(具体样本量未在摘要中明确给出) NA NA 敏感性,特异性,SROC曲线下面积,阳性似然比,阴性似然比,阳性预测值,阴性预测值 NA
20 2026-02-22
Prospective pilot evaluation of a deep learning model for kidney stone detection on CT using a web-based workflow platform
2026-Feb-21, International urology and nephrology IF:1.8Q3
研究论文 本研究前瞻性地评估了一个基于深度学习的肾结石检测模型在模拟真实放射学工作流程的Web平台上的性能、可用性和工作流程兼容性 采用前瞻性评估方法,在模拟真实放射学工作流程的Web平台上部署深度学习模型,而非仅依赖回顾性数据集,并动态计算诊断指标和记录人机交互以评估性能稳定性 未尝试与PACS/RIS系统完全集成,仅作为临床实施前的中间步骤 评估深度学习模型在真实放射学工作流程条件下对肾结石检测的性能和实用性 非对比腹部CT图像中的肾结石 计算机视觉 肾结石 CT成像 CNN 图像 内部数据集235例(3,452张切片),独立保留集732张切片,前瞻性评估中三位放射科医生上传并标注了5,152张匿名CT切片 未明确提及 双阶段卷积神经网络 准确率, 灵敏度, 特异性, 精确率, Cohen's kappa 未明确提及
回到顶部