本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2024-08-07 |
Deep learning with convolutional neural networks for EEG decoding and visualization
2017-11, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.23730
PMID:28782865
|
研究论文 | 本文研究了使用卷积神经网络(ConvNets)进行脑电图(EEG)解码和可视化的深度学习方法 | 提出了使用批量归一化和指数线性单元等机器学习领域的最新进展,以及裁剪训练策略,提高了深度ConvNets的解码性能 | 需要进一步理解如何设计和训练ConvNets以进行端到端的EEG解码,并可视化ConvNets学习到的信息性EEG特征 | 探索如何设计和训练ConvNets以从原始EEG中解码任务相关信息,并展示深度ConvNets结合先进可视化技术在基于EEG的脑映射中的潜力 | 研究了不同架构的深度ConvNets,用于从原始EEG解码想象或执行的任务 | 机器学习 | NA | 卷积神经网络(ConvNets) | CNN | 脑电图(EEG) | 未具体说明样本数量 |