本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2025-10-07 |
Deep Recurrent Neural Networks for Human Activity Recognition
2017-Nov-06, Sensors (Basel, Switzerland)
DOI:10.3390/s17112556
PMID:29113103
|
研究论文 | 提出使用深度循环神经网络进行人类活动识别,能够捕捉可变长度输入序列中的长期依赖关系 | 采用基于LSTM的深度循环神经网络架构,能够处理可变长度输入序列并捕获长期时间依赖关系,克服了传统方法固定长度输入窗口的限制 | 未明确说明模型在实时应用中的计算效率和处理速度 | 开发能够有效识别人类活动的高性能模型 | 从身体佩戴传感器获取的人类活动数据序列 | 机器学习 | NA | 传感器数据采集 | RNN, LSTM | 时间序列数据 | 多个基准数据集(具体数量未明确说明) | NA | LSTM, 单向LSTM, 双向LSTM, 级联LSTM | NA | NA |
| 2 | 2025-10-07 |
DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG
2017-11, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2017.2721116
PMID:28678710
|
研究论文 | 提出一种基于原始单通道脑电图的自动睡眠分期深度学习模型DeepSleepNet | 无需手工设计特征,自动从原始脑电信号中学习时间不变特征和睡眠阶段转换规则 | NA | 开发自动睡眠分期模型 | 睡眠脑电图数据 | 机器学习 | 睡眠障碍 | 脑电图 | CNN, 双向LSTM | 脑电信号 | 来自两个公共睡眠数据集的不同单通道脑电图 | NA | DeepSleepNet | 准确率, 宏F1分数 | NA |
| 3 | 2024-08-07 |
Deep learning with convolutional neural networks for EEG decoding and visualization
2017-11, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.23730
PMID:28782865
|
研究论文 | 本文研究了使用卷积神经网络(ConvNets)进行脑电图(EEG)解码和可视化的深度学习方法 | 提出了使用批量归一化和指数线性单元等机器学习领域的最新进展,以及裁剪训练策略,提高了深度ConvNets的解码性能 | 需要进一步理解如何设计和训练ConvNets以进行端到端的EEG解码,并可视化ConvNets学习到的信息性EEG特征 | 探索如何设计和训练ConvNets以从原始EEG中解码任务相关信息,并展示深度ConvNets结合先进可视化技术在基于EEG的脑映射中的潜力 | 研究了不同架构的深度ConvNets,用于从原始EEG解码想象或执行的任务 | 机器学习 | NA | 卷积神经网络(ConvNets) | CNN | 脑电图(EEG) | 未具体说明样本数量 | NA | NA | NA | NA |