深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:201806-201806] [清除筛选条件]
当前共找到 4 篇文献。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1 2024-11-10
DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants
2018-06-20, Nucleic acids research IF:16.6Q1
研究论文 本文介绍了一种基于深度学习的模型DeFine,用于准确量化转录因子与DNA结合的强度,并评估非编码变异的功能影响 DeFine模型不仅能够准确分类转录因子与DNA的结合与否,还能预测实值的结合强度,从而评估变异的功能影响 NA 开发一种能够准确预测转录因子与DNA结合强度并评估非编码变异功能影响的工具 转录因子与DNA结合的强度以及非编码变异的功能影响 机器学习 NA 深度学习 卷积神经网络 序列数据 利用大规模的转录因子ChIP-seq数据进行模型训练和验证
2 2024-09-05
Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography
2018-06, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种专门设计用于从有限光声测量中提供高分辨率3D图像的深度神经网络 网络设计为迭代方案,并结合了数据拟合的梯度信息以补偿有限视图伪影 NA 加速有限视图3D光声断层成像 光声测量数据 计算机视觉 NA 深度学习 深度神经网络 图像 一组来自肺部CT扫描的分段血管及体内光声测量数据
3 2024-08-07
Latent source mining in FMRI via restricted Boltzmann machine
2018-06, Human brain mapping IF:3.5Q1
研究论文 本文提出了一种基于受限玻尔兹曼机(RBM)的盲源分离(BSS)方法,用于功能性磁共振成像(fMRI)时间序列分析,以提高脑网络识别的准确性 该方法通过将RBM应用于fMRI时间序列而非体积,显著降低了模型复杂性并提高了训练集规模,从而提升了训练效率 NA 探索RBM在大型fMRI数据中挖掘复杂结构的能力,并评估其在fMRI数据分析中作为深层模型构建块的潜力 fMRI数据中的脑网络识别 机器学习 NA 受限玻尔兹曼机(RBM) RBM 时间序列 基于Human Connectome Project(HCP)数据集
4 2024-08-05
An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest
2018-06-26, Journal of the American Heart Association IF:5.0Q1
研究论文 本研究提出了一种基于深度学习的预警系统,用于预测院内心脏骤停 该系统表现出比现有的传统追踪和触发系统更高的性能,具有更高的敏感性和更低的误报警率 此研究基于回顾性队列,样本来源于两家医院,可能存在外部有效性限制 研究旨在提高对院内心脏骤停的预测能力 研究对象为2010年6月至2017年7月期间住院的患者共52,131例 机器学习 心脏疾病 深度学习 循环神经网络 医疗数据 52,131名患者
回到顶部