深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:201901-201912] [清除筛选条件]
当前共找到 251 篇文献,本页显示第 241 - 251 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
241 2024-08-07
AFAR: A Deep Learning Based Tool for Automated Facial Affect Recognition
2019-May, Proceedings of the ... International Conference on Automatic Face and Gesture Recognition. IEEE International Conference on Automatic Face & Gesture Recognition
NA NA NA NA NA NA NA NA NA NA NA NA
242 2024-08-05
FULLY-AUTOMATIC SEGMENTATION OF KIDNEYS IN CLINICAL ULTRASOUND IMAGES USING A BOUNDARY DISTANCE REGRESSION NETWORK
2019-Apr, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出一种新颖的边界距离回归深度神经网络用于自动分割临床超声图像中的肾脏 提出了一种全新的深度学习方法,通过边界距离回归网络解决肾脏形状和图像强度分布多样性的挑战 未提及具体的限制因素 提升肾脏自动分割的性能 针对超声图像中的肾脏进行自动分割 数字病理学 NA 深度学习 边界距离回归网络 图像 NA
243 2024-08-05
Machine learning for segmenting cells in corneal endothelium images
2019-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文研究了使用深度学习方法对角膜内皮细胞图像进行自动分割 比较了两种深度神经网络方法U-Net和SegNet在细胞分割中的表现 未明确提及本文的具体局限性 探讨如何自动分割角膜内皮细胞图像以评估角膜健康 角膜内皮细胞图像及其分割 计算机视觉 NA 深度学习 U-Net和SegNet 图像 130张有专家标注的图像
244 2024-08-05
Predicting Cognitive Scores from Resting fMRI Data and Geometric Features of the Brain
2019-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文探讨了深度学习神经网络在预测正常人群和注意力缺陷多动障碍(ADHD)患者的认知表现评分中的应用 研究展示了将休息态功能性磁共振成像(rfMRI)与几何特征相结合以提高认知评分预测的方法 样本量相对较小,仅包含168张图像,可能影响模型的泛化能力 探索使用深度学习神经网络来预测认知能力评分 正常对照和ADHD患者的脑部结构和功能成像数据 计算机视觉 注意力缺陷多动障碍 功能性磁共振成像(fMRI), T1加权磁共振成像(MRI) 卷积神经网络(CNN) 图像 168张图像用于训练,90张图像用于测试
245 2024-08-05
Surgical Aid Visualization System for Glioblastoma Tumor Identification based on Deep Learning and In-Vivo Hyperspectral Images of Human Patients
2019-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本研究开发了一种基于深度学习和人脑组织的体内高光谱图像的外科辅助可视化系统,以支持胶质母细胞瘤的识别 提出了一种利用深度学习处理高光谱图像的手术辅助可视化系统,实现准确的肿瘤重切及术中实时指导 样本量较小,仅包括16个不同患者的高光谱数据 旨在提供实时、可靠的肿瘤切除辅助技术,以提高外科手术的准确性和病人生活质量 研究对象为人脑组织的高光谱图像 数字病理学 胶质瘤 高光谱成像(HSI) 深度学习(DL) 图像 16个不同患者的26个超立方体,总计258,810个标记像素
246 2024-08-05
A scalable discrete-time survival model for neural networks
2019, PeerJ IF:2.3Q2
研究论文 本文描述了一种适用于神经网络的离散时间生存模型Nnet-survival 该模型使用小批量随机梯度下降方法进行训练,并具有灵活性,能够处理大数据集及不同的基线风险率 未提及具体的模型局限性 研究旨在提高生存数据的预测能力 研究对象为具有已知随访时间及事件/审查指标的患者数据 机器学习 NA 最大似然法 神经网络 模拟数据和真实数据 NA
247 2024-08-05
Pre-operative Overall Survival Time Prediction for Glioblastoma Patients Using Deep Learning on Both Imaging Phenotype and Genotype
2019, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
研究论文 该文章提出了一种新的基于深度学习的方法来预测胶质母细胞瘤(GBM)患者的术前总生存时间。 创新点在于结合术前多模态MR图像和肿瘤基因型信息进行总生存时间预测,尤其是使用了多任务卷积神经网络来同时进行基因型和总生存时间预测。 文章中可能没有讨论模型在不同临床环境中的适用性和外部验证的结果。 研究目的在于通过结合影像表型和基因型信息以提高胶质母细胞瘤患者的术前预后准确性。 研究对象是120名胶质母细胞瘤(GBM)患者的术前影像数据。 机器学习 胶质母细胞瘤 深度学习 多任务卷积神经网络(CNN) 影像 120名胶质母细胞瘤患者的样本
248 2024-08-05
Global analysis of N6-methyladenosine functions and its disease association using deep learning and network-based methods
2019-01, PLoS computational biology IF:3.8Q1
研究论文 本文提出了一种计算方案用于预测m6A调控基因及其相关疾病 提出了Deep-m6A模型和Hot-m6A网络管道以解决m6A调控基因的检测和功能优先排序 对m6A调控的具体基因如何影响癌症等疾病的机制了解仍然有限 探讨m6A在基因调控及其在疾病中的作用 涉及m6A调控基因及其关联疾病的研究 计算机视觉 白血病, 肾细胞癌 MeRIP-Seq 深度学习模型, 网络模型 人类样本数据 75个MeRIP-seq人类样本
249 2024-08-07
Deep learning image recognition enables efficient genome editing in zebrafish by automated injections
2019, PloS one IF:2.9Q1
研究论文 本文开发了一种基于深度学习软件的机器学习技术,实现了对斑马鱼胚胎的高速自动化微注射,提高了基因编辑效率。 该研究首次展示了使用深度学习图像识别技术进行斑马鱼胚胎自动化微注射,显著提高了操作速度和效率。 NA 开发一种高效的自动化微注射系统,用于斑马鱼胚胎的基因编辑。 斑马鱼胚胎的基因编辑和微注射技术。 计算机视觉 NA 深度学习 Inception v3 图像 未具体说明样本数量
250 2024-08-07
FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images
2019-01, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种名为FissureNet的深度学习框架,用于在CT图像中检测肺裂 FissureNet采用了一种从粗到细的级联卷积神经网络策略,有效解决了传统方法在检测弱和异常肺裂时敏感性低的问题 NA 提高肺裂在CT图像中的检测准确性 肺裂在CT图像中的自动检测 计算机视觉 肺部疾病 卷积神经网络 CNN 图像 3706名受试者的吸气和呼气3DCT扫描,以及20名受试者的4DCT扫描
251 2024-08-07
Unsupervised Deep Learning for Bayesian Brain MRI Segmentation
2019-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
研究论文 本文提出了一种结合传统概率图谱分割和深度学习的无监督学习方法,用于不同对比度的脑部MRI图像分割 该方法无需手动标注图像即可训练新的MRI扫描分割模型 NA 开发一种无需手动标注的新图像数据集的深度学习分割模型 脑部MRI图像分割 计算机视觉 NA 深度学习 深度学习模型 图像 数千个脑部MRI扫描
回到顶部