本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2024-08-07 |
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
2019-07, Nature medicine
IF:58.7Q1
DOI:10.1038/s41591-019-0462-y
PMID:31160815
|
研究论文 | 本文展示了深度残差学习可以从普遍可获得的H&E组织学图像中直接预测胃肠道癌症患者的微卫星不稳定性 | 提出了一种新的方法,即利用深度学习技术直接从组织学图像中预测微卫星不稳定性,无需额外的遗传或免疫组织化学测试 | NA | 探索深度学习技术在预测胃肠道癌症微卫星不稳定性中的应用 | 胃肠道癌症患者的微卫星不稳定性 | 机器学习 | 胃肠道癌症 | 深度学习 | 深度残差学习 | 图像 | NA |
62 | 2024-08-07 |
Improved Prediction on Heart Transplant Rejection Using Convolutional Autoencoder and Multiple Instance Learning on Whole-Slide Imaging
2019-May, ... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics
DOI:10.1109/bhi.2019.8834632
PMID:32577622
|
研究论文 | 本文开发了一种先进的流程,用于质量控制、特征提取、聚类和分类,以提高心脏移植排斥反应的预测准确性。 | 本文首次结合卷积自编码器和多实例学习(MIL)在全切片成像上进行心脏移植排斥反应的自动训练和预测。 | NA | 提高心脏移植排斥反应的预测准确性。 | 心脏移植排斥反应的预测。 | 计算机视觉 | 心血管疾病 | 卷积自编码器,多实例学习(MIL) | CNN | 图像 | NA |
63 | 2024-08-07 |
Predicting HLA class II antigen presentation through integrated deep learning
2019-11, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-019-0280-2
PMID:31611695
|
研究论文 | 本文介绍了MARIA,一种多模态循环神经网络,用于预测特定HLA II类等位基因背景下感兴趣基因的抗原提呈可能性 | MARIA利用多种训练数据和改进的机器学习框架,在验证数据集中表现优于现有方法 | NA | 准确预测HLA II类分子抗原提呈,以促进疫苗开发和癌症免疫治疗 | HLA II类分子抗原提呈的预测 | 机器学习 | NA | NA | 循环神经网络 | 基因序列、表达水平、蛋白酶切割信号 | NA |
64 | 2024-08-07 |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
2019-09-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-019-11994-0
PMID:31484923
|
研究论文 | 本文介绍了DMPfold方法,利用深度学习预测原子间距离界限、主链氢键网络和扭转角,通过迭代方式构建蛋白质模型 | DMPfold在CASP12域测试集上生成的模型比两种流行方法更准确,并且同样适用于跨膜蛋白 | NA | 扩展从头蛋白质建模对基因组的覆盖范围 | 蛋白质结构预测 | 机器学习 | NA | 深度学习 | CNN | 序列数据 | 应用于所有未知结构的Pfam域,为25%的所谓暗家族生成可信模型,为16%的人类蛋白质组UniProt条目生成模型 |
65 | 2024-08-07 |
Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy
2019-01, Eye (London, England)
DOI:10.1038/s41433-018-0269-y
PMID:30401899
|
综述 | 本文综述了基于眼底照片的深度学习算法在糖尿病视网膜病变(DR)检测中的应用 | 深度神经网络在从视网膜图像中筛查DR方面提供了巨大的优势,提高了对DR病变和疾病风险因素的识别准确性和可靠性 | NA | 比较当前各种深度学习模型在糖尿病视网膜病变(DR)诊断中的证据 | 糖尿病视网膜病变(DR)的诊断 | 机器学习 | 糖尿病 | 卷积神经网络(深度学习方法) | CNN | 图像 | NA |
66 | 2024-08-07 |
RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images
2019-Aug-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.10.003815
PMID:31452977
|
研究论文 | 本文介绍了一种基于深度学习的自动方法RAC-CNN,用于在多模态自适应光学扫描光眼底镜图像中检测和分类杆状和锥状光感受器 | 提出了一种新的深度学习方法RAC-CNN,用于自动检测和分类杆状和锥状光感受器,这是之前未有充分验证的自动方法 | NA | 开发一种自动方法来量化自适应光学扫描光眼底镜图像中的杆状和锥状光感受器,以辅助研究各种视网膜病理 | 杆状和锥状光感受器在自适应光学扫描光眼底镜图像中的检测和分类 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 包括健康受试者和患有全色盲的受试者,跨越不同视网膜偏心度的图像 |
67 | 2024-08-07 |
Deep mixed model for marginal epistasis detection and population stratification correction in genome-wide association studies
2019-Dec-27, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-019-3300-9
PMID:31881907
|
研究论文 | 本文提出了一种用于边际上位效应检测和人群分层校正的深度混合模型,用于全基因组关联研究 | 本文提出了一种神经网络方法,能够潜在地模拟遗传关联研究中SNP之间的任意相互作用,作为混合模型在纠正混杂因素方面的扩展 | NA | 旨在更彻底地建模和发现上位效应 | 全基因组关联研究中的遗传变异与复杂性状之间的关联 | 机器学习 | 老年疾病 | 深度学习 | CNN, LSTM | 遗传数据 | 涉及阿尔茨海默病数据集 |
68 | 2024-08-07 |
Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE)
2019-Dec-20, BMC genomics
IF:3.5Q2
DOI:10.1186/s12864-019-6285-x
PMID:31856727
|
研究论文 | 本文开发了一种名为Multi-view Factorization AutoEncoder (MAE)的方法,该方法能够结合多组学数据和生物交互网络,以揭示疾病背后的分子途径 | 本文创新性地将领域知识如分子交互网络融入到训练目标中,通过引入良好的归纳偏差来提高模型的泛化能力 | 由于'大p小n'问题(即高维特征的小样本),仅使用多组学数据训练大规模泛化的深度学习模型非常具有挑战性 | 旨在解决多组学数据深度学习中的过拟合问题,并探索分子特征与临床特征之间的复杂关系 | 多组学数据和生物交互网络 | 机器学习 | NA | 深度学习 | AutoEncoder | 多组学数据 | 小样本 |
69 | 2024-08-07 |
A deep neural network approach to predicting clinical outcomes of neuroblastoma patients
2019-12-20, BMC medical genomics
IF:2.1Q3
DOI:10.1186/s12920-019-0628-y
PMID:31856829
|
研究论文 | 本文提出了一种基于图方法特征提取和深度神经网络的策略,用于预测神经母细胞瘤患者的临床结果 | 采用图方法进行特征提取,结合深度神经网络模型,提高了预测准确性 | 研究主要集中在神经母细胞瘤数据集上,可能需要进一步验证在其他疾病数据集上的适用性 | 开发一种新的方法来预测患者的临床结果,并理解疾病发病机制和治疗反应的生物学机制 | 神经母细胞瘤患者的临床结果预测 | 机器学习 | 神经母细胞瘤 | 深度学习 | 深度神经网络 (DNN) | 组学数据 | 四个神经母细胞瘤数据集 |
70 | 2024-08-07 |
SigUNet: signal peptide recognition based on semantic segmentation
2019-Dec-20, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-019-3245-z
PMID:31861981
|
research paper | 本研究提出了一种基于语义分割的信号肽识别方法SigUNet,该方法使用不含全连接层的卷积神经网络,并在真核生物数据上表现出优于现有信号肽预测器的性能。 | 本研究首次将复杂的卷积神经网络应用于信号肽识别,并提出了模型简化和数据增强的方法来改善预测性能。 | NA | 开发一种准确的信号肽识别器,并展示如何利用其他领域的先进网络进行信号肽识别。 | 信号肽的识别及其在蛋白质分类中的应用。 | computer vision | NA | NA | CNN | sequence | NA |
71 | 2024-08-07 |
A temporal visualization of chronic obstructive pulmonary disease progression using deep learning and unstructured clinical notes
2019-12-17, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-019-0984-8
PMID:31842874
|
研究论文 | 本文提出了一种使用深度学习和非结构化临床笔记来可视化慢性阻塞性肺病(COPD)进展的方法 | 本文提出了一种四层深度学习模型,利用专门配置的循环神经网络捕捉不规则时间间隔片段,并创建了一个COPD进展的时间可视化图谱 | NA | 旨在描述COPD患者在死亡前疾病进展的时间,并生成一个描述COPD不同阶段症状和体征的时间可视化图 | COPD患者 | 机器学习 | 慢性阻塞性肺病 | 深度学习 | 循环神经网络 | 文本 | 15,500名COPD患者 |
72 | 2024-08-07 |
Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder
2019-12-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-54653-6
PMID:31792321
|
研究论文 | 本文开发了一种深度学习算法,利用深度变分自编码器(VAE)来提高青光眼视觉场损失进展速率的估计和未来模式的预测 | 使用深度VAE在检测进展速率和预测未来视觉场模式方面表现出显著优势 | NA | 提高青光眼视觉场损失进展速率的估计和未来模式的预测 | 青光眼患者的视觉场损失 | 机器学习 | 青光眼 | 深度变分自编码器(VAE) | VAE | 视觉场数据 | 29,161个视觉场数据来自3,832名患者 |
73 | 2024-08-07 |
CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks
2019-12, RNA (New York, N.Y.)
DOI:10.1261/rna.070565.119
PMID:31537716
|
研究论文 | 本文开发了CRIP工具,用于预测circRNA上的RBP结合位点,采用基于密码子的编码方案和混合深度神经网络结构 | 首次提出基于机器学习的计算工具CRIP,用于预测circRNA上的RBP结合位点,并采用了创新的基于密码子的编码方案和混合深度学习架构 | NA | 理解circRNA的调控功能,特别是circRNA与RNA结合蛋白(RBP)的相互作用 | circRNA与RBP的结合位点 | 机器学习 | NA | NA | CNN和RNN | 序列 | 37个数据集,每个数据集对应一个RBP的结合位点序列片段 |
74 | 2024-08-07 |
How theory and design-based research can mature PBL practice and research
2019-12, Advances in health sciences education : theory and practice
IF:3.0Q2
DOI:10.1007/s10459-019-09940-2
PMID:31720879
|
研究论文 | 本文探讨了如何通过理论和基于设计的研究来成熟化问题导向学习(PBL)的实践和研究 | 提出了基于设计的研究(DBR)作为一种新的方法来桥接理论和实践,通过重新设计基于理论的教学实践并与各利益相关者紧密合作来调查这些实践 | 没有一种万能的解决方案来解决PBL中遇到的问题,且应谨慎得出哪种PBL方法最佳的结论 | 旨在更好地将PBL实践与情境性、建构性、自我导向性和协作性学习的理论或原则相结合 | 问题导向学习(PBL)的实践和研究 | NA | NA | NA | NA | NA | NA |
75 | 2024-08-07 |
Tumor tissue classification based on micro-hyperspectral technology and deep learning
2019-Dec-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.10.006370
PMID:31853405
|
研究论文 | 本文利用微型高光谱成像技术,结合深度学习模型,对胃癌组织进行分类研究 | 提出了一种基于深度学习模型的胃癌组织分析方法,并展示了CNN在提取肿瘤组织深层光谱-空间特征方面的优势 | NA | 探索高光谱技术在肿瘤组织病理诊断中的应用 | 胃癌组织与正常组织的分类 | 机器学习 | 胃癌 | 微型高光谱成像技术 | CNN | 高光谱数据 | 30名胃癌患者 |
76 | 2024-08-07 |
Deep learning for quality assessment of retinal OCT images
2019-Dec-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.10.006057
PMID:31853385
|
研究论文 | 本研究首次提出了一种基于信号完整性、位置和有效性的OCT图像质量评估(OCT-IQA)系统,并使用四种CNN架构进行训练和评估 | 首次提出了一种基于深度学习的OCT图像质量评估系统,并通过实验证明了其在提高视网膜病变检测准确性方面的有效性 | NA | 开发一种自动化的OCT图像质量评估系统,以提高视网膜病变检测的准确性 | 视网膜OCT图像的质量评估 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 使用了两个随机创建的测试数据集,其中一个数据集经过OCT-IQA系统筛选,仅包含高质量图像,另一个数据集混合了高质量和低质量图像 |
77 | 2024-08-07 |
Learning to see stuff
2019-Dec, Current opinion in behavioral sciences
IF:4.9Q1
DOI:10.1016/j.cobeha.2019.07.004
PMID:31886321
|
研究论文 | 本文探讨了无监督深度学习在解释复杂外观材料(如纺织品和食品)视觉感知中的应用 | 提出了一种新的框架,通过学习高效准确地编码和预测视觉输入,而不是估计物理量如反射率或光照 | 文章未明确提及具体限制 | 解释人类如何学习识别复杂外观的材料 | 复杂外观的材料,如纺织品和食品 | 计算机视觉 | NA | 无监督深度学习 | 神经网络 | 图像 | 未明确提及具体样本数量 |
78 | 2024-08-07 |
Latest advances in aging research and drug discovery
2019-11-21, Aging
DOI:10.18632/aging.102487
PMID:31770722
|
综述 | 本文综述了衰老研究及药物发现的最新进展,并介绍了相关领域的年度会议系列 | 文章强调了人工智能,特别是深度学习在衰老研究中的应用,以及多家公司将衰老研究纳入其业务模型的创新策略 | NA | 旨在更好地理解与衰老相关的多层次变化,并探索治疗与年龄相关疾病的新干预措施 | 衰老过程中的分子、细胞、器官、组织、生理、心理及社会学变化 | NA | 老年病 | 深度学习 | NA | NA | NA |
79 | 2024-08-07 |
Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning
2019-Oct, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.6.4.046003
PMID:31824982
|
研究论文 | 本文提出了一种使用深度学习和T2加权磁共振成像(MRI)自动预测脑肿瘤异柠檬酸脱氢酶(IDH)状态的方法 | 首次展示了仅使用T2w MRI通过深度学习方法预测IDH突变状态的可行性 | 需要解决随机化过程中的数据泄露问题,以避免分类准确性的向上偏差 | 开发一种非侵入性的方法来预测脑肿瘤的IDH突变状态 | 脑肿瘤的IDH突变状态 | 计算机视觉 | 脑肿瘤 | MRI | 二维密集连接模型 | 图像 | 260名受试者(120名高级别和140名低级别胶质瘤) |
80 | 2024-08-07 |
Deep Learning Analysis of Cerebral Blood Flow to Identify Cognitive Impairment and Frailty in Persons Living With HIV
2019-12-15, Journal of acquired immune deficiency syndromes (1999)
DOI:10.1097/QAI.0000000000002181
PMID:31714429
|
研究论文 | 本研究利用深度学习算法分析脑血流,以识别HIV感染者中的认知障碍和虚弱状态 | 本研究采用深度神经网络模型,通过特征提取技术识别出对认知障碍和虚弱状态预测最强的脑区 | NA | 研究目的是通过深度学习算法识别HIV感染者的认知障碍和虚弱状态 | 研究对象为接受联合抗逆转录病毒治疗的病毒学抑制的HIV感染者 | 机器学习 | HIV感染 | 深度学习算法 | 深度神经网络(DNN) | 脑血流图像 | 125名HIV感染者 |