本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2024-10-16 |
Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation Maximisation
2019-Oct, IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
2 | 2024-10-11 |
Illuminating Clues of Cancer Buried in Prostate MR Image: Deep Learning and Expert Approaches
2019-10-30, Biomolecules
IF:4.8Q1
DOI:10.3390/biom9110673
PMID:31671711
|
研究论文 | 本文通过可解释模型比较了深度学习和人类专家在前列腺MR图像中识别癌症区域的方法 | 本文首次通过3D重建病理图像,比较了深度学习关注的区域与放射科医生和病理学家识别的癌症位置的重叠情况 | 本文仅使用了307张前列腺MR图像和896张病理图像,样本量有限 | 比较深度学习和人类专家在前列腺MR图像中识别癌症区域的方法,并探讨深度学习在癌症诊断中的潜力 | 前列腺MR图像和病理图像 | 计算机视觉 | 前列腺癌 | 深度学习 | 深度神经网络 | 图像 | 307张前列腺MR图像和896张病理图像 |
3 | 2024-10-04 |
Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks
2019-Oct-16, Cancers
IF:4.5Q1
DOI:10.3390/cancers11101579
PMID:31623293
|
研究论文 | 本文研究了使用密集连接的深度分类网络预测葡萄膜黑色素瘤中BAP1表达水平 | 提出了一种基于深度学习的密集连接分类网络,用于预测BAP1表达,具有高灵敏度、特异性和准确性 | 研究样本仅来自两个中心,可能存在地域偏差 | 验证人工智能是否能准确预测葡萄膜黑色素瘤中BAP1表达水平 | 葡萄膜黑色素瘤中的BAP1表达水平 | 数字病理学 | 葡萄膜黑色素瘤 | 深度学习 | 密集连接分类网络 | 图像 | 47个摘除的眼球样本,分为6800个训练补丁和1376个验证补丁 |
4 | 2024-09-11 |
DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation
2019-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-030-32245-8_47
PMID:39247524
|
研究论文 | 提出了一种联合学习图像配准和分割的深度学习框架 | 该框架能够利用现有分割数据进行弱监督,并在没有分割数据时通过分割网络计算,从而提高配准和分割的准确性 | NA | 提高医学图像配准和分割的准确性,特别是在训练数据有限的情况下 | 膝关节和脑部的3D磁共振图像 | 计算机视觉 | NA | 深度卷积神经网络 (CNN) | CNN | 图像 | 膝关节和脑部的3D磁共振图像,具体数量未明确 |
5 | 2024-08-18 |
Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions
2019-10-02, JAMA network open
IF:10.5Q1
|
研究论文 | 评估人工智能算法在皮肤病变图像中检测黑色素瘤的准确性 | 该研究展示了人工智能算法在识别皮肤镜图像中的黑色素瘤方面的能力,其准确性与专业人员相当 | 研究中部分图像缺失或不适合分析,可能影响算法的训练和评估 | 确定人工智能算法在智能手机和数码单反相机拍摄的皮肤镜图像中识别黑色素瘤的准确性 | 使用三种不同相机拍摄的514名至少有一个可疑色素性皮肤病变患者的皮肤镜图像 | 计算机视觉 | 皮肤癌 | 深度学习 | 深度学习算法 | 图像 | 514名患者,共1550张皮肤病变图像 |
6 | 2024-08-07 |
Toward predicting the evolution of lung tumors during radiotherapy observed on a longitudinal MR imaging study via a deep learning algorithm
2019-Oct, Medical physics
IF:3.2Q1
DOI:10.1002/mp.13765
PMID:31410855
|
研究论文 | 本研究旨在通过深度学习算法预测放射治疗期间肺肿瘤在纵向MRI研究中的空间和时间演变,以促进自适应放射治疗(ART)。 | 开发了一种预测神经网络(P-net),该网络结合卷积神经网络、门控循环单元和注意力模型,用于预测肿瘤的空间分布和时间演变。 | 研究样本量较小,需要进一步的前瞻性研究以验证算法的有效性。 | 预测放射治疗期间肺肿瘤的空间和时间演变,以支持自适应放射治疗决策。 | 肺肿瘤在放射治疗期间的空间和时间演变。 | 机器学习 | 肺肿瘤 | MRI-T2w扫描 | 卷积神经网络、门控循环单元、注意力模型 | 图像 | 10名肺肿瘤患者 |
7 | 2024-08-07 |
Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning
2019-Oct, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.6.4.046003
PMID:31824982
|
研究论文 | 本文提出了一种使用深度学习和T2加权磁共振成像(MRI)自动预测脑肿瘤异柠檬酸脱氢酶(IDH)状态的方法 | 首次展示了仅使用T2w MRI通过深度学习方法预测IDH突变状态的可行性 | 需要解决随机化过程中的数据泄露问题,以避免分类准确性的向上偏差 | 开发一种非侵入性的方法来预测脑肿瘤的IDH突变状态 | 脑肿瘤的IDH突变状态 | 计算机视觉 | 脑肿瘤 | MRI | 二维密集连接模型 | 图像 | 260名受试者(120名高级别和140名低级别胶质瘤) |
8 | 2024-08-07 |
Using deep learning for a diffusion-based segmentation of the dentate nucleus and its benefits over atlas-based methods
2019-Oct, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.6.4.044007
PMID:31824980
|
研究论文 | 本文介绍了一种使用深度学习技术自动分割齿状核的方法,并比较了其与基于图谱方法的优势 | 提出的深度学习方法在自动分割齿状核时,与手动标签的吻合度高于传统的基于图谱的分割方法 | NA | 开发一种能够更准确地自动分割齿状核的方法 | 齿状核的自动分割 | 计算机视觉 | NA | 深度学习 | NA | 医学影像 | NA |
9 | 2024-08-07 |
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
2019-10-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-51779-5
PMID:31664075
|
研究论文 | 本文开发了一种直接处理原始计算机断层扫描(CT)数据而不进行图像重建的系统,通过在正弦图空间中进行机器学习,实现了身体区域识别和颅内出血(ICH)检测。 | 本文提出的SinoNet模型,是一种针对正弦图优化的卷积神经网络,能够在正弦图空间中直接处理CT数据,无需图像重建,且在稀疏采样正弦图上表现优于传统图像空间网络。 | NA | 开发一种新的机器学习系统,直接处理原始CT数据,跳过图像重建步骤,以提高医疗图像分析的效率和准确性。 | 身体区域识别和颅内出血(ICH)检测 | 机器学习 | 颅内出血 | NA | 卷积神经网络(CNN) | 正弦图 | NA |
10 | 2024-08-07 |
Deep learning-based optical field screening for robust optical diffraction tomography
2019-10-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-51363-x
PMID:31645595
|
研究论文 | 本文提出了一种基于深度学习的光场筛选方法,用于提高光学衍射断层成像(ODT)的鲁棒性和高吞吐量 | 通过将专家知识融入深度卷积神经网络,实现了对缺陷2D图像的高效自动筛选 | NA | 提高光学衍射断层成像的图像质量和处理效率 | 光学场图像的质量控制 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 包含清洁和噪声标注的大量光学场图像数据集 |
11 | 2024-08-07 |
QM-sym, a symmetrized quantum chemistry database of 135 kilo molecules
2019-10-18, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-019-0237-9
PMID:31628326
|
研究论文 | 本文构建了一个名为QM-sym的新量子化学数据库,包含135k个具有Ch对称性的有机分子,并计算了这些分子的几何、电子、能量和热力学性质。 | QM-sym数据库包含了罕见的对称性信息,可以显著降低结构计算的复杂性,并简化为最小对称单元。 | NA | 解决传统从头算量子化学方法耗时的问题,并提供一个包含对称性信息的量子化学数据库。 | 135k个具有Ch对称性的有机分子及其量子化学性质。 | 量子化学 | NA | Gaussian 09 | NA | 数据库 | 135k个有机分子 |
12 | 2024-08-07 |
Hands-Free User Interface for AR/VR Devices Exploiting Wearer's Facial Gestures Using Unsupervised Deep Learning
2019-Oct-14, Sensors (Basel, Switzerland)
DOI:10.3390/s19204441
PMID:31614988
|
研究论文 | 本研究提出了一种利用佩戴者面部表情识别用户意图的无手操作界面,适用于增强现实(AR)头戴设备 | 设计了一种基于红外扩散特性的人体皮肤变形检测传感器,并开发了一种无监督深度学习方法来识别面部表情 | NA | 开发适用于头戴环境的增强现实技术用户界面 | 增强现实头戴设备的用户界面 | 计算机视觉 | NA | 无监督深度学习 | 时空自编码器和深度嵌入聚类算法 | 皮肤变形数据 | NA |
13 | 2024-08-07 |
Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT
2019-Oct-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.10.005042
PMID:31646029
|
研究论文 | 本文提出了一种基于深度学习的网络,用于从视网膜OCT图像中提取连续、平滑且保证拓扑结构的表面和MME分割 | 该网络在训练过程中自动学习形状先验,而不是像图方法那样硬编码。此外,该方法通过两个级联的深度网络在一次前向传播中同时分割视网膜表面和MME,提高了分割的准确性和速度 | NA | 开发一种新的深度学习框架,用于从视网膜OCT图像中准确快速地分割多发性硬化症患者的视网膜层和MME | 多发性硬化症患者的视网膜层和微囊性黄斑水肿(MME) | 计算机视觉 | 多发性硬化症 | 深度学习 | 深度网络 | 图像 | 3D体积数据 |
14 | 2024-08-07 |
Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images
2019-Oct, Ophthalmic medical image analysis : 6th International Workshop, OMIA 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, Proceedings. OMIA (Workshop) (6th : 2019 : Shenzhen Shi, China)
DOI:10.1007/978-3-030-32956-3_11
PMID:31701095
|
研究论文 | 本文开发了一种AOSeg-Net方法,利用多通道U-Net预测细胞边界的空间概率,并通过区域级水平集算法实现亚像素级别的细胞分割 | 提出了一种新的AOSeg-Net方法,结合五色定理和区域级水平集算法,有效解决了在低对比度、各向异性区域和密集细胞边界接触的AO图像中细胞分割的难题 | NA | 实现高分辨率视网膜图像中光感受器细胞的亚像素级别分割 | 光感受器细胞的形态评估 | 计算机视觉 | NA | NA | U-Net | 图像 | 428张高分辨率视网膜图像,来自23名人类受试者 |
15 | 2024-08-07 |
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head
2019-10-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-51062-7
PMID:31595006
|
研究论文 | 本文提出了一种深度学习方法,用于去噪视神经头部的光学相干断层扫描(OCT)图像 | 使用自定义深度学习网络,能够成功去噪未见过的单帧OCT B扫描,提高图像质量和组织可见性 | NA | 开发一种能够在减少扫描时间的同时提高OCT图像质量的方法 | 视神经头部(ONH)组织的光学相干断层扫描(OCT)图像 | 计算机视觉 | NA | 深度学习 | 自定义深度学习网络 | 图像 | 训练数据包括2,328个'干净B扫描'及其对应的'噪声B扫描',测试数据包括1,552个未见过的单帧B扫描 |
16 | 2024-08-07 |
Artificial intelligence reveals environmental constraints on colour diversity in insects
2019-10-07, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-019-12500-2
PMID:31591404
|
研究论文 | 本文利用深度学习技术分析了台湾近2000种蛾类的20,000多张图像,揭示了颜色特征在生态梯度上的微妙但稳健的变化模式 | 首次使用深度学习模型生成2048维特征向量,准确预测每个物种的平均海拔,并发现高海拔生物群落内的图像特征变化较小 | NA | 解释动物在广阔地理尺度上的颜色变化 | 台湾近2000种蛾类的颜色特征 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 20,000多张图像,近2,000种蛾类 |
17 | 2024-08-07 |
Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study
2019-10, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.26723
PMID:30896065
|
研究论文 | 本研究评估了深度卷积神经网络(DCNN)在从磁共振成像(MR)图像中区分脑膜瘤组织病理学分级的诊断准确性 | 使用Inception-V3 DCNN在ADC图上提供了最佳的诊断准确性结果,AUC达到0.94 | DCNN在PCT1 W图像上的区分准确性较低 | 确定深度卷积神经网络在从MR图像中区分脑膜瘤组织病理学分级的诊断准确性 | 117名脑膜瘤患者,包括79名WHO I级,32名WHO II级和6名WHO III级 | 计算机视觉 | 脑膜瘤 | 磁共振成像(MR) | 深度卷积神经网络(DCNN) | 图像 | 117名脑膜瘤患者 |
18 | 2024-08-07 |
Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI
2019-10, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2019.07.012
PMID:31323317
|
研究论文 | 本文提出了一种基于残差块深度神经网络(ResDNN)的数据驱动方法,用于模拟扩散加权磁共振成像(DW-MRI)信号与真实结构之间的非线性映射,以重建局部白质纤维结构。 | 本文采用了一种新颖的数据驱动方法,通过深度神经网络回归模型,有效地填补了DW-MRI信号与真实结构之间的差距。 | NA | 研究目的是通过深度学习技术揭示DW-MRI中未被充分利用的信息,以提高白质纤维结构的重建精度。 | 研究对象包括松鼠猴脑部的3D组织学数据和人类连接组项目中的12名受试者的扫描重扫描数据。 | 计算机视觉 | NA | 扩散加权磁共振成像(DW-MRI) | 残差块深度神经网络(ResDNN) | 图像 | 训练数据包括两个松鼠猴脑部的3D组织学数据集,验证数据包括第三个松鼠猴脑部数据集和人类连接组项目中的12名受试者的数据。 |
19 | 2024-08-07 |
Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction
2019-10, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.27813
PMID:31106902
|
研究论文 | 本文介绍了一种结合机器学习(ML)和物理基础的图像重建框架,实现了无需导航器的高加速多重回波平面成像(msEPI),并展示了其在高分辨率结构和扩散成像中的应用 | 利用深度学习获取具有最小伪影的临时图像,并结合联合虚拟线圈灵敏度编码(JVC-SENSE)重建技术,提高了图像质量 | NA | 开发一种新的图像重建框架,以实现高加速的多重回波平面成像 | 高分辨率结构和扩散成像 | 机器学习 | NA | 多重回波平面成像(msEPI) | 深度学习网络 | 图像 | 使用2次EPI拍摄实现8倍平面内加速和2倍多频带加速,以及使用5次拍摄实现9倍平面内加速和2倍多频带加速 |
20 | 2024-08-05 |
Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning
2019-Oct, Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)
DOI:10.1007/978-3-030-46640-4_6
PMID:32577629
|
研究论文 | 本文评估了使用3D深度学习架构进行胶质瘤MRI扫描的头骨去除性能 | 提出了一种新的方法,专注于多参数MRI扫描中的头骨去除,与现有方法相比能够更好地处理脑肿瘤图像 | 只评估了公共可用的实现,而未考虑其他潜在的3D深度学习架构 | 研究旨在优化在胶质瘤MRI图像上进行头骨去除的性能 | 使用1796个手动检查过的胶质瘤mpMRI扫描作为研究对象 | 计算机视觉 | 脑肿瘤 | 3D深度学习 | DeepMedic, 3D U-Net, FCN | MRI图像 | 1796个mpMRI脑肿瘤扫描 |