本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2024-09-27 |
Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network
2020, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0235783
PMID:32634167
|
研究论文 | 研究基于多阶段卷积神经网络(MS-CNN)的图像识别模型在商品图像智能识别中的应用及其识别性能 | 提出了一种基于MS-CNN模型的商品图像识别方法,并通过实验验证了其在不同噪声和标签错误条件下的鲁棒性 | 未提及具体的局限性 | 探索基于MS-CNN模型的商品图像识别方法的应用及其在不同条件下的识别性能 | 商品图像的颜色、形状和纹理特征,以及MS-CNN模型的识别效果 | 计算机视觉 | NA | 卷积神经网络(CNN) | 多阶段卷积神经网络(MS-CNN) | 图像 | 50,000张包含不同商品的图片 |
22 | 2024-09-27 |
Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning
2020, BME frontiers
IF:5.0Q1
DOI:10.34133/2020/8620932
PMID:37849965
|
研究论文 | 本文开发了一种可泛化的深度学习技术,用于从多个双光子显微镜系统获取的小鼠大脑图像中进行血管分割 | 该方法能够泛化到不同成像系统,并能高效处理大规模血管图像,计算速度比现有技术快10倍,深度大3倍 | NA | 开发一种可泛化且计算高效的深度学习框架,用于大脑血管的解剖建模 | 小鼠大脑的双光子显微镜血管图像 | 计算机视觉 | NA | 深度学习 | 深度学习框架 | 图像 | 多个小鼠大脑的血管图像 |
23 | 2024-09-05 |
Early Detection of Alzheimer's Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning
2020, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2020.00259
PMID:32477040
|
研究论文 | 本文提出了一种结合卷积神经网络(CNN)和集成学习(EL)的新方法,用于通过磁共振成像(MRI)早期检测阿尔茨海默病(AD) | 该研究创新性地结合了CNN和EL,通过数据驱动的方法定位最具辨别性的脑区,并最大化集成模型的泛化能力,以早期捕捉AD相关的脑部变化 | 需要进一步研究以检验该方法的临床意义及其在检测其他脑部疾病中的通用性 | 开发一种新的方法用于早期检测阿尔茨海默病 | 使用MRI对MCI患者和AD患者进行分类 | 机器学习 | 阿尔茨海默病 | 磁共振成像(MRI) | 卷积神经网络(CNN) | 图像 | 未明确提及具体样本数量 |
24 | 2024-09-02 |
Machine Learning Neuroprotective Strategy Reveals a Unique Set of Parkinson Therapeutic Nicotine Analogs
2020, The open bioinformatics journal
PMID:33927788
|
研究论文 | 本文提出了一种新颖的机器学习计算策略,用于预测尼古丁类似物在帕金森病中通过未配对信号通路的行为对神经保护潜力的影响 | 本文开发了一种跨学科的计算策略,结合结构生物信息学、信号通路手动重建和深度学习,预测尼古丁类似物的神经保护活性 | NA | 开发一种计算策略,预测一系列8种新型尼古丁类似物在帕金森病中的神经保护活性 | 8种新型尼古丁类似物及其在帕金森病中的神经保护活性 | 机器学习 | 帕金森病 | 深度学习 | 机器学习模型 | 结构数据 | 8种新型尼古丁类似物 |
25 | 2024-08-31 |
MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks
2020, Transactions of the Indian National Academy of Engineering : an international journal of engineering and technology
DOI:10.1007/s41403-020-00157-z
PMID:38624452
|
研究论文 | 本文提出了一种基于深度学习的无人值守方法,用于实时监控佩戴医疗口罩的人群 | 使用多种流行的物体检测算法(如YOLOv3、YOLOv3Tiny、SSD和Faster R-CNN)在Moxa3K基准数据集上进行评估,以确定更适合实时物体检测的方法 | 由于嵌入式设备的内存和计算能力有限,实时场景解析通过物体检测在边缘设备上运行非常具有挑战性 | 开发一种高效、快速的实时监控系统,用于检测人们是否佩戴口罩 | 佩戴医疗口罩的人群 | 计算机视觉 | NA | 深度学习 | 物体检测算法(YOLOv3、YOLOv3Tiny、SSD、Faster R-CNN) | 图像 | Moxa3K基准数据集 |
26 | 2024-08-23 |
Trust in Robots: Challenges and Opportunities
2020, Current robotics reports
DOI:10.1007/s43154-020-00029-y
PMID:34977590
|
研究论文 | 评估当前机器人信任研究的状态,并探讨近期方法学进展是否有助于开发可信赖的机器人 | 近期研究转向开发机器人主动获取、校准和维持用户信任的策略,特别是通过赋予机器人推理能力(如通过概率建模) | 在实际人机交互环境中,信任度量、机器人行为的保证(如用户隐私)以及处理多维数据方面仍存在挑战 | 探讨如何利用心理学、可信系统、机器人伦理和深度学习等领域的最新进展来解决这些挑战,以创造真正自主、可信赖的社会机器人 | 机器人信任研究及其在实际应用中的挑战 | NA | NA | 概率建模 | NA | 多维数据 | NA |
27 | 2024-08-22 |
Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model
2020, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2020.03.025
PMID:32280433
|
研究论文 | 本研究利用预训练的基于深度学习的药物-靶点相互作用模型MT-DTI,识别可能作用于SARS-CoV-2病毒蛋白的商业可用抗病毒药物 | 使用MT-DTI模型预测商业可用药物对SARS-CoV-2的潜在作用,为缺乏有效治疗选项的SARS-CoV-2提供新的治疗策略 | NA | 识别可能对SARS-CoV-2有效的商业可用抗病毒药物 | SARS-CoV-2病毒蛋白及其潜在的抗病毒药物 | 机器学习 | NA | 深度学习 | Molecule Transformer-Drug Target Interaction (MT-DTI) | 药物-靶点相互作用数据 | 多种抗病毒药物及其对SARS-CoV-2蛋白酶的抑制活性 |
28 | 2024-08-18 |
Quantifying the Association Between Psychotherapy Content and Clinical Outcomes Using Deep Learning
2020-01-01, JAMA psychiatry
IF:22.5Q1
DOI:10.1001/jamapsychiatry.2019.2664
PMID:31436785
|
研究论文 | 本文利用深度学习模型分析大规模认知行为疗法(CBT)会话记录数据集,量化治疗内容与临床结果之间的关联。 | 首次应用深度学习技术于心理治疗领域,通过分析治疗师的话语内容来量化治疗效果。 | 研究仅限于特定的CBT治疗协议和特定的数据集,可能限制了结果的普遍性。 | 探索心理治疗内容与临床结果之间的量化关系,并利用深度学习技术提供新的治疗见解。 | 研究对象为接受互联网CBT治疗的心理健康障碍患者。 | 机器学习 | 心理健康障碍 | 深度学习 | 深度学习模型 | 文本 | 17,572名患者(90,934份治疗会话记录) |
29 | 2024-08-11 |
Validation and Optimization of Multi-Organ Segmentation on Clinical Imaging Archives
2020, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2549035
PMID:34040277
|
研究论文 | 本文验证并优化了基于临床影像档案的多器官分割方法 | 采用了改进的3D U-Net模型,并通过手动修正标签重新训练模型,提高了分割性能 | 在真实世界中,由于患者腹部生理的广泛变异性,分割可能具有挑战性 | 旨在提高多器官腹部CT分割的准确性,以便临床应用 | 腹部CT影像中的多器官分割 | 计算机视觉 | NA | CT | 3D U-Net | 影像 | 476名脾脏异常患者(队列A)和1754名无脾脏异常患者(队列B) |
30 | 2024-08-08 |
Anterior Mediastinal Lesion Segmentation Based on Two-Stage 3D ResUNet With Attention Gates and Lung Segmentation
2020, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2020.618357
PMID:33634027
|
研究论文 | 本文提出了一种基于两阶段3D ResUNet网络结合肺部分割的前纵隔病变分割方法 | 引入了注意力门机制和肺部分割技术,以提高病变分割的准确性 | NA | 提高前纵隔病变在CT图像中的分割准确性,辅助医生诊断 | 前纵隔病变 | 计算机视觉 | 胸部疾病 | 深度学习 | 3D ResUNet | CT图像 | 230名患者 |
31 | 2024-08-07 |
Preliminary development of a deep learning-based automated primary headache diagnosis model using Japanese natural language processing of medical questionnaire
2020, Surgical neurology international
DOI:10.25259/SNI_827_2020
PMID:33500813
|
研究论文 | 本文初步开发了一种基于深度学习的自动化原发性头痛诊断模型,使用日本自然语言处理技术处理医疗问卷中的非结构化句子 | 该模型通过深度学习框架处理医疗问卷中的非结构化句子,旨在减少医生和患者的时间和负担,并提高他们的生活质量 | NA | 解决日本原发性头痛治疗中医疗资源不足的问题 | 原发性头痛患者 | 自然语言处理 | 头痛 | 深度学习 | DL框架 | 文本 | 848名原发性头痛患者(495名女性和353名男性) |
32 | 2024-08-07 |
A Deep Learning-Based Approach for Identifying the Medicinal Uses of Plant-Derived Natural Compounds
2020, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2020.584875
PMID:33519445
|
研究论文 | 本文提出了一种基于深度学习的方法,用于识别植物衍生天然化合物的药用用途 | 利用深度学习处理大量异构药物和天然化合物数据,有效利用异构特征缓解信息不完整问题 | NA | 开发一种新方法以减少确认天然化合物生物活性所需的时间和成本 | 植物衍生天然化合物及其药用用途 | 机器学习 | NA | 深度学习 | 深度学习模型 | 数据 | 4,507种天然化合物和2,882种已批准和研究中的药物 |
33 | 2024-08-07 |
The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology
2020, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2020.570465
PMID:33575207
|
研究论文 | 本文综述了放射基因组学在精准医学中的应用,探讨了其在肿瘤诊断、治疗决策和预后评估中的作用 | 放射基因组学结合了大量从医学图像中提取的定量数据与个体基因组表型,通过深度学习构建预测模型,为个性化医疗提供了新的科学方法 | 放射基因组学的工作流程标准和国际统一的统计方法指南需要进一步确认 | 探讨放射基因组学在肿瘤学中的应用,支持诊断、治疗决策和预后评估 | 放射基因组学在不同类型肿瘤中的预测价值 | 数字病理学 | 肿瘤 | 深度学习 | 深度学习模型 | 医学图像数据和基因组数据 | NA |
34 | 2024-08-06 |
Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep Learning and Human Graders
2020, Journal of diabetes research
IF:3.6Q2
DOI:10.1155/2020/8839376
PMID:33381600
|
研究论文 | 评估深度学习和受训人类评估者在糖尿病视网膜病变筛查中的效果 | 首次比较了两种筛查模式在长期糖尿病视网膜病变筛查中的表现 | 长期筛查的敏感性降低,可能影响对比的有效性 | 研究糖尿病视网膜病变筛查的有效性和准确性 | 随机选取的经过两次筛查的糖尿病患者 | 数字病理学 | 糖尿病视网膜病变 | 深度学习 | NA | 彩图眼底照片 | 5,738名患者 |
35 | 2024-08-07 |
Real-time plant health assessment via implementing cloud-based scalable transfer learning on AWS DeepLens
2020, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0243243
PMID:33332376
|
研究论文 | 本文通过在AWS DeepLens上实施基于云的可扩展迁移学习,实现了对果树和蔬菜植物叶病的实时自动检测和分类 | 提出的DeepLens分类和检测模型(DCDM)解决了以往机器学习模型在硬件要求高、可扩展性有限和实际使用效率低下的问题 | NA | 旨在通过自动化识别和分类植物叶病,减少经济损失并保护特定植物物种 | 果树(苹果、葡萄、桃和草莓)和蔬菜植物(土豆和番茄)的叶病 | 机器学习 | NA | 迁移学习 | 深度学习模型 | 图像 | 训练使用了四万张图像,评估使用了十万张图像 |
36 | 2024-08-07 |
A deep learning backcasting approach to the electrolyte, metabolite, and acid-base parameters that predict risk in ICU patients
2020, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0242878
PMID:33332413
|
研究论文 | 本研究通过深度学习回溯方法,利用电解质、代谢物和酸碱参数,预测ICU患者的风险 | 采用深度学习回溯方法,提高了对ICU患者生理不稳定性发展的早期识别和决策能力 | 研究为回顾性分析,未来需在前瞻性研究中验证模型的有效性 | 提高对ICU患者风险恶化的识别能力 | ICU患者的电解质、代谢物和酸碱参数 | 机器学习 | NA | 深度学习 | 深度学习模型 | 数值数据 | 5157名成年ICU患者 |
37 | 2024-08-07 |
Insights of Novel Coronavirus (SARS-CoV-2) disease outbreak, management and treatment
2020, AIMS microbiology
IF:2.7Q3
DOI:10.3934/microbiol.2020013
PMID:33134740
|
研究论文 | 本文探讨了新型冠状病毒(SARS-CoV-2)疫情的爆发、管理和治疗 | 文章介绍了实时PCR、免疫学、显微镜和地理信息系统(GIS)等临床诊断技术的进步,以及人工智能、组合化学和深度学习方法在寻找新型治疗药物中的应用 | NA | 研究新型冠状病毒(SARS-CoV-2)的爆发、管理和治疗策略 | 新型冠状病毒(SARS-CoV-2)及其对全球健康的影响 | 公共卫生 | 传染病 | 实时PCR(RT-PCR)、地理信息系统(GIS)、人工智能(AI)、深度学习 | NA | NA | 全球超过423349例死亡 |
38 | 2024-08-07 |
MULTI-DEEP: A novel CAD system for coronavirus (COVID-19) diagnosis from CT images using multiple convolution neural networks
2020, PeerJ
IF:2.3Q2
DOI:10.7717/peerj.10086
PMID:33062453
|
研究论文 | 本文提出了一种基于多个卷积神经网络融合的新型计算机辅助诊断系统,用于从CT图像中诊断COVID-19 | 该系统通过融合多个卷积神经网络,并使用支持向量机分类器和主成分分析来提取和分类深度特征,提高了诊断准确性和效率 | 公开可用的CT图像数据集的缺乏使得CAD系统的设计具有挑战性 | 开发一种高效的计算机辅助诊断系统,用于早期检测和准确诊断COVID-19 | COVID-19的CT图像 | 计算机视觉 | COVID-19 | 卷积神经网络 | CNN | 图像 | 未明确提及样本数量 |
39 | 2024-08-07 |
Immune contexture analysis in immuno-oncology: applications and challenges of multiplex fluorescent immunohistochemistry
2020, Clinical & translational immunology
IF:4.6Q2
DOI:10.1002/cti2.1183
PMID:33072322
|
研究论文 | 本文讨论了基于多重荧光免疫组织化学和深度学习技术的定量图像分析在免疫肿瘤学中的应用和发展,以及在临床环境中有效使用该技术的挑战 | 介绍了使用Vectra自动化数字病理系统和FCS express流式细胞仪软件进行多重荧光染色肿瘤切片分析的工作流程 | 讨论了在临床环境中有效使用多重荧光免疫组织化学技术的挑战 | 理解肿瘤微环境中复杂的免疫结构交互作用,以指导患者选择、临床试验设计、联合治疗和患者管理 | 肿瘤微环境中的免疫结构分析 | 数字病理学 | 肿瘤学 | 多重荧光免疫组织化学 | 深度学习 | 图像 | NA |
40 | 2024-08-07 |
Deep Learning-Based Human Activity Recognition for Continuous Activity and Gesture Monitoring for Schizophrenia Patients With Negative Symptoms
2020, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2020.574375
PMID:33192706
|
研究论文 | 本研究旨在开发一种基于手腕佩戴设备的人类活动识别(HAR)模型,用于评估精神分裂症患者负面症状相关的活动。 | 本研究首次在临床试验环境中使用手腕佩戴设备来推导基于活动和手势的数字结果测量,以评估精神分裂症患者的负面症状。 | 研究样本量较小,且仅限于精神分裂症患者,可能限制了结果的普遍性。 | 开发和验证一种用于监测精神分裂症患者负面症状相关活动的人类活动识别模型。 | 精神分裂症患者及其负面症状。 | 机器学习 | 精神分裂症 | NA | NA | 活动数据 | 33名患者 |