深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202001-202012] [清除筛选条件]
当前共找到 309 篇文献,本页显示第 221 - 240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
221 2024-08-07
Immune contexture analysis in immuno-oncology: applications and challenges of multiplex fluorescent immunohistochemistry
2020, Clinical & translational immunology IF:4.6Q2
研究论文 本文讨论了基于多重荧光免疫组织化学和深度学习技术的定量图像分析在免疫肿瘤学中的应用和发展,以及在临床环境中有效使用该技术的挑战 介绍了使用Vectra自动化数字病理系统和FCS express流式细胞仪软件进行多重荧光染色肿瘤切片分析的工作流程 讨论了在临床环境中有效使用多重荧光免疫组织化学技术的挑战 理解肿瘤微环境中复杂的免疫结构交互作用,以指导患者选择、临床试验设计、联合治疗和患者管理 肿瘤微环境中的免疫结构分析 数字病理学 肿瘤学 多重荧光免疫组织化学 深度学习 图像 NA
222 2024-08-07
Deep Learning-Based Human Activity Recognition for Continuous Activity and Gesture Monitoring for Schizophrenia Patients With Negative Symptoms
2020, Frontiers in psychiatry IF:3.2Q2
研究论文 本研究旨在开发一种基于手腕佩戴设备的人类活动识别(HAR)模型,用于评估精神分裂症患者负面症状相关的活动。 本研究首次在临床试验环境中使用手腕佩戴设备来推导基于活动和手势的数字结果测量,以评估精神分裂症患者的负面症状。 研究样本量较小,且仅限于精神分裂症患者,可能限制了结果的普遍性。 开发和验证一种用于监测精神分裂症患者负面症状相关活动的人类活动识别模型。 精神分裂症患者及其负面症状。 机器学习 精神分裂症 NA NA 活动数据 33名患者
223 2024-08-07
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach
2020, NeuroImage. Clinical
研究论文 本文提出了一种两阶段深度学习方法,用于在磁共振图像中自动检测脑微出血 该方法结合了基于区域的YOLO阶段用于潜在脑微出血候选检测和三维卷积神经网络(3D-CNN)阶段用于减少假阳性 研究仅使用了高和低平面分辨率的数据进行训练和评估 开发一种有效的自动检测脑微出血的方法 脑微出血的自动检测 计算机视觉 脑血管疾病 深度学习 YOLO, 3D-CNN 图像 72名受试者包含188个脑微出血和107名受试者包含572个脑微出血
224 2024-08-07
CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images
2020-Nov, Chaos, solitons, and fractals
研究论文 本文提出了一种名为CVDNet的深度卷积神经网络模型,用于通过胸部X光图像分类COVID-19感染与正常和其他肺炎病例 CVDNet模型采用两个并行层次和不同内核大小来捕捉输入的局部和全局特征 模型在小型数据集上表现良好,但可能需要更多训练数据以进一步提高性能 开发一种低成本且高效的深度学习模型,帮助医疗专业人员快速检测COVID-19并确定感染的严重程度 COVID-19感染的检测与分类 计算机视觉 呼吸系统疾病 深度学习 CNN 图像 包含219例COVID-19、1341例正常和1345例病毒性肺炎的胸部X光图像
225 2024-08-07
Automatic detection of pulmonary nodules on CT images with YOLOv3: development and evaluation using simulated and patient data
2020-Oct, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本文开发并评估了一种基于YOLOv3卷积神经网络的高效肺结节计算机辅助检测方法,用于CT图像中肺结节的定位和直径估计 该方法采用了YOLOv3算法,具有自动多尺度特征提取器和基于特征的边界框生成器,用于肺结节的特征筛选、定位和直径估计 NA 开发一种高效的肺结节计算机辅助检测方法,用于CT图像中肺结节的定位和直径估计 肺结节在CT图像中的定位和直径估计 计算机视觉 肺部疾病 YOLOv3 CNN 图像 模拟研究中使用了300个CT扫描,患者研究中使用了888个CT图像
226 2024-08-07
High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients
2020-09-01, Journal of translational medicine IF:6.1Q1
研究论文 本研究通过系统分析基因mRNA表达与临床结果的关系,探讨了非洲裔美国乳腺癌患者的生存差异分子基础,并确定了MKK3基因的高表达与更差的临床结果相关。 本研究首次确定了MKK3基因在非洲裔美国乳腺癌患者中的高表达与生存率下降的强相关性,并提出了MKK3-MYC蛋白相互作用作为减少乳腺癌生存种族差异的新治疗靶点。 本研究仅基于TCGA数据库中的乳腺癌患者样本,可能存在样本代表性不足的问题。 探讨非洲裔美国乳腺癌患者的生存差异分子基础,并寻找新的治疗靶点。 非洲裔美国乳腺癌患者及其基因表达与临床结果的关系。 数字病理学 乳腺癌 全卷积深度学习模型 CNN 图像 1055个乳腺癌样本
227 2024-08-07
Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation
2020-08-25, Journal of medical Internet research IF:5.8Q1
研究论文 本文利用人工神经网络在英国开发和验证了COVID-19的预后模型 首次开发并验证了适用于确诊SARS-CoV-2患者的预后评分系统 模型仅在单一地点的数据上进行训练和验证 创建一个基于人工神经网络的入院时死亡风险评分系统 确诊SARS-CoV-2的患者 机器学习 COVID-19 人工神经网络 ANN 患者特征数据 398名确诊SARS-CoV-2并入院的患者
228 2024-08-07
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
2020-08-25, Nature communications IF:14.7Q1
研究论文 本文系统地评估了深度学习、核模型和线性模型在UKBiobank脑部图像数据集上的性能,并与传统的机器学习数据集进行了比较 研究发现,在UKBiobank脑部图像数据集中,简单的线性模型在年龄和性别预测任务上与复杂的深度学习模型表现相当 深度学习和核学习方法在预测典型脑部扫描的常见表型时,其非线性优势未能得到充分利用 探讨不同类型的机器学习模型在不同数据集上的性能表现 UKBiobank脑部图像数据集以及MNIST和Zalando Fashion数据集 机器学习 NA 深度学习 线性模型、核模型、深度学习模型 图像 样本量达到约10,000名受试者时,线性模型的性能仍在提升
229 2024-08-07
Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches
2020-08-18, Scientific reports IF:3.8Q1
研究论文 本文比较了基于自监督学习和无监督学习的深度学习算法在压缩感知磁共振成像(MRI)图像质量增强中的应用 提出了两种适用于非像素对齐临床数据集的深度学习去噪算法:自监督学习和无监督学习 自监督学习在图像噪声和信噪比方面优于无监督学习,但在放射组学特征可重复性方面不如无监督学习 研究如何通过深度学习技术提高压缩感知MRI的图像质量,以减少扫描时间并提高诊断准确性 颅内血管壁的高分辨率质子密度加权MRI图像 计算机视觉 NA 压缩感知MRI 深度学习 图像 NA
230 2024-08-07
Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets
2020-08-14, Nature communications IF:14.7Q1
研究论文 本文展示了使用多国数据集训练的深度学习算法在胸部CT扫描中检测COVID-19肺炎的能力 利用AI技术在多国患者数据集上训练的深度学习算法,能够高准确度地区分COVID-19肺炎与其他肺炎 文章未提及具体的局限性 开发和验证用于胸部CT扫描中快速评估和区分COVID-19肺炎的AI算法 COVID-19肺炎的检测与区分 计算机视觉 COVID-19 深度学习 深度学习算法 图像 训练集包含1280名患者,独立测试集包含1337名患者
231 2024-08-07
The Advent of Generative Chemistry
2020-Aug-13, ACS medicinal chemistry letters IF:3.5Q2
综述 本文综述了生成对抗网络(GANs)和强化学习(RL)在药物分子设计中的应用及其在生成具有所需性质的新分子方面的最新进展 介绍了GANs和RL在药物分子设计中的应用,旨在更有效地利用数据和更好地探索化学空间 讨论了生成化学这一新兴领域的当前局限性和挑战 回顾生成具有所需性质的新分子的最新进展,并探讨相关技术的应用 生成对抗网络(GANs)、强化学习(RL)及相关技术在药物分子设计中的应用 机器学习 NA 生成对抗网络(GANs)、强化学习(RL) GAN 分子数据 NA
232 2024-08-07
Melanoma Diagnosis Using Deep Learning and Fuzzy Logic
2020-Aug-09, Diagnostics (Basel, Switzerland)
研究论文 本文提出了一种基于深度学习的YOLO算法,结合模糊逻辑用于从皮肤镜和数字图像中检测黑色素瘤 本文引入了图论的最小生成树概念和L型模糊数近似方法进行两阶段分割,并在特征提取过程中提取实际受影响的病变区域 NA 开发一种更快速且计算有效的系统用于检测黑色素瘤 黑色素瘤的检测 计算机视觉 皮肤癌 深度卷积神经网络(DCNNs) YOLO 图像 20250张图像
233 2024-08-07
Semantic Deep Learning: Prior Knowledge and a Type of Four-Term Embedding Analogy to Acquire Treatments for Well-Known Diseases
2020-Aug-06, JMIR medical informatics IF:3.1Q2
研究论文 本研究通过语义深度学习方法,利用先验知识和四项式嵌入类比,系统地提取疾病治疗陈述 本研究采用了一种新的四项式嵌入类比方法,不同于传统的成对类比,并利用先验知识进行推理 研究中使用的数据集规模相对较小,且需要进一步的人工验证 旨在通过语义深度学习方法,系统地从生物医学文献中提取基于证据的疾病治疗陈述 疾病治疗陈述的提取和验证 自然语言处理 NA 连续词袋模型(CBOW)和跳字模型(Skip-gram)嵌入 深度学习模型 文本 423K n-grams 从 PubMed 系统评价子集(PMSB 数据集)中提取
234 2024-08-07
Feature Selection for Health Care Costs Prediction Using Weighted Evidential Regression
2020-Aug-06, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于加权证据回归的特征选择方法,用于预测医疗保健成本,并允许结果的解释 该方法结合了证据回归和k-近邻算法,能够在保持预测准确性的同时提供结果的解释性 NA 开发一种既能够达到黑盒方法预测准确性,又允许结果解释的医疗成本预测方法 医疗保健成本预测及其影响因素 机器学习 NA 证据回归(EVREG) 回归模型 医疗记录 使用了Tsuyama Chuo Hospital从2013年到2018年的日本健康记录
235 2024-08-07
Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks
2020-Aug-03, Sensors (Basel, Switzerland)
research paper 本文提出了一系列单阶段深度学习方法,用于实时检测铁路轨道关键部件,如轨道、螺栓和夹子。 采用YOLOv2模型,实现了93%的平均精度均值(mAP)和35张图像每秒(IPS)的检测速度。 较大的输入尺寸虽然提高了检测精度,但增加了推理时间。 提高铁路轨道检查的准确性和速度。 铁路轨道的关键部件,包括轨道、螺栓和夹子。 computer vision NA 深度学习 YOLOv2, FPN image NA
236 2024-08-07
Current Status and Future Perspectives of Artificial Intelligence in Magnetic Resonance Breast Imaging
2020, Contrast media & molecular imaging
综述 本文综述了人工智能(AI)和深度学习(DL)在乳腺磁共振成像(MRI)中的当前状态和未来展望 强调了开发用于精准医学的定量影像生物标志物的重要性,以及乳腺MRI和DL在此方面的潜力 讨论了DL在乳腺MRI应用中的未来挑战 提供AI在乳腺MRI中当前状态和未来展望的全面图景 乳腺MRI中的AI和DL应用 计算机视觉 NA 深度学习 DL 影像 NA
237 2024-08-07
A Deep Network Model on Dynamic Functional Connectivity With Applications to Gender Classification and Intelligence Prediction
2020, Frontiers in neuroscience IF:3.2Q2
研究论文 本文提出了一种结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的端到端深度学习模型,用于捕捉功能连接序列的时空特征,并应用于性别分类和智力预测任务 该模型能够同时捕捉功能连接序列的时空特征,并在性别分类和智力预测任务中显著优于先前报告的模型 NA 研究动态功能脑网络的动态特性与个体行为和认知特征之间的关系 功能脑网络的动态特性 机器学习 NA fMRI CNN 和 LSTM 功能连接序列 1,050 名参与者(人类连接组计划)
238 2024-08-07
Prediction of trabecular bone architectural features by deep learning models using simulated DXA images
2020-Dec, Bone reports IF:2.1Q3
研究论文 本研究利用深度学习模型通过模拟DXA图像预测松质骨的微观结构特征 首次使用深度学习技术从DXA图像中预测松质骨的主要微观结构特征 研究仅限于使用模拟DXA图像,且输入图像的数量和分辨率对预测准确性有显著影响 验证基于DXA图像的深度学习模型预测松质骨微观结构特征的准确性 松质骨的微观结构特征 计算机视觉 NA 深度学习 CNN 图像 1249个6mm×6mm×6mm的松质骨立方体
239 2024-08-07
Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches
2020-Nov, Chaos, solitons, and fractals
研究论文 本文使用三种基于深度学习的方法,通过肺部X光图像检测和诊断COVID-19患者 提出了一种基于卷积神经网络(CNN)的方法,用于直接使用肺部图像进行疾病诊断,并展示了其在准确性和敏感性上优于深度神经网络(DNN)方法 NA 设计一种快速且成本较低的COVID-19诊断方法 COVID-19患者的肺部感染组织 计算机视觉 COVID-19 卷积神经网络(CNN) CNN 图像 未明确提及具体样本数量
240 2024-08-07
A fully open-source framework for deep learning protein real-valued distances
2020-08-07, Scientific reports IF:3.8Q1
研究论文 本文介绍了一个名为protein distance net(PDNET)的全开源框架,用于深度学习蛋白质的实值距离预测 PDNET框架包含一个代表性数据集以及用于训练和测试深度学习方法的脚本,支持在网页浏览器中使用免费平台如Google Colab进行模型训练和测试 NA 推进深度学习方法在蛋白质结构预测中的应用 蛋白质的实值距离预测 机器学习 NA 深度学习 CNN 数据集 一个代表性数据集
回到顶部