本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41 | 2024-10-04 |
Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps
2020-Sep, Journal of thoracic imaging
IF:2.0Q3
DOI:10.1097/RTI.0000000000000505
PMID:32205817
|
研究论文 | 本文探讨了使用深度学习语义分割方法在胸部X光片上突出显示肺炎潜在焦点,以辅助诊断的可行性 | 提出了一种基于语义分割的深度学习方法,用于生成肺炎的概率图,以辅助诊断 | 研究为回顾性研究,使用的是公开数据集,且样本量有限 | 探索深度学习在胸部X光片上辅助诊断肺炎的可行性 | 胸部X光片上的肺炎诊断 | 计算机视觉 | 肺部疾病 | 卷积神经网络 (CNN) | U-net | 图像 | 22,000张胸部X光片,其中3684张用于独立验证 |
42 | 2024-10-04 |
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells
2020-09, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1008193
PMID:32925919
|
研究论文 | 本文介绍了一种基于深度学习的细胞核分割工具NuSeT,用于在显微镜图像中准确分割拥挤的细胞核 | NuSeT结合了U-Net和区域提议网络(RPN),并通过分水岭步骤进一步优化,显著提高了在复杂2D和3D图像中检测和描绘细胞核边界的能力 | NA | 开发一种能够准确分割拥挤细胞核的深度学习工具 | 显微镜图像中的细胞核 | 计算机视觉 | NA | 深度学习 | U-Net和区域提议网络(RPN) | 图像 | 多种类型的荧光成像数据 |
43 | 2024-10-04 |
Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types
2020-Feb, Oncology letters
IF:2.5Q3
DOI:10.3892/ol.2019.11214
PMID:31966086
|
研究论文 | 研究利用深度学习技术结合HPV类型对宫颈鳞状上皮病变进行分类的可行性 | 开发了一种结合卷积神经网络和HPV张量的AI分类器,其准确性高于妇科肿瘤专家 | 需要进一步研究以验证其在临床中的应用 | 探索使用深度学习技术对宫颈鳞状上皮病变进行分类的可行性 | 宫颈鳞状上皮病变(SILs)的分类 | 计算机视觉 | 宫颈癌 | 深度学习 | 卷积神经网络 | 图像 | 253名患者,其中210名患有高级别SIL,43名患有低级别SIL |
44 | 2024-10-04 |
A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis
2020, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2020.00779
PMID:33117114
|
综述 | 本文综述了深度学习在基于神经影像的脑部疾病分析中的应用 | 本文讨论了现有研究的局限性并提出了未来可能的研究方向 | 本文主要讨论了现有研究的局限性 | 综述深度学习在基于神经影像的脑部疾病分析中的应用 | 本文研究了阿尔茨海默病、帕金森病、自闭症谱系障碍和精神分裂症四种典型脑部疾病 | 计算机视觉 | 神经退行性疾病 | 深度学习 | 深度神经网络 | 影像 | NA |
45 | 2024-10-04 |
Deep Learning for Predicting Complex Traits in Spring Wheat Breeding Program
2020, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2020.613325
PMID:33469463
|
研究论文 | 本文评估了深度学习模型在华盛顿州立大学春小麦育种项目中预测复杂性状的潜力 | 深度学习模型在预测复杂性状方面比传统模型rrBLUP提高了0至5%的准确性 | NA | 评估深度学习模型在春小麦育种项目中预测复杂性状的潜力 | 春小麦的五个不同数量性状 | 机器学习 | NA | 深度学习 | 多层感知器 (MLP) 和卷积神经网络 (CNN) | 基因数据 | 650个重组自交系 (RILs) 来自春小麦嵌套关联作图 (NAM) 群体 |
46 | 2024-10-04 |
Large-Scale Counting and Localization of Pineapple Inflorescence Through Deep Density-Estimation
2020, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2020.599705
PMID:33584745
|
研究论文 | 本文通过深度密度估计方法实现菠萝花序的大规模计数和定位 | 利用深度学习进行密度估计,实现菠萝花序的自动计数,计算复杂度与植物数量无关,适用于大规模检测 | 未提及具体局限性 | 优化菠萝种植管理,提高收获效率 | 菠萝花序的计数和定位 | 计算机视觉 | NA | 深度学习 | 密度估计模型 | 图像 | 超过160万株开花植物 |
47 | 2024-10-04 |
Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network
2020, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2020.612962
PMID:33585511
|
研究论文 | 提出了一种基于图卷积网络的三维深度学习方法,用于快速诊断COVID-19肺炎 | 通过图卷积网络整合多源CT数据,并提出迁移学习方法初始化3D-CNN参数,以提高诊断性能 | 未提及 | 开发一种快速诊断COVID-19肺炎的方法,减轻放射科医生和医生的负担 | COVID-19肺炎患者和正常对照组的CT图像 | 计算机视觉 | COVID-19 | 图卷积网络(GCN) | 3D卷积神经网络(3D-CNN) | 图像 | 399例COVID-19感染病例和400例正常对照组,来自六种设备类型 |
48 | 2024-10-04 |
An Introductory Review of Deep Learning for Prediction Models With Big Data
2020, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2020.00004
PMID:33733124
|
综述 | 本文介绍了深度学习在人工智能和机器学习中的新学习范式,并重点讨论了深度前馈神经网络、卷积神经网络、深度信念网络、自编码器和长短期记忆网络等模型 | 本文介绍了深度学习模型的核心架构,并强调了这些架构在构建新应用特定网络架构中的灵活组合能力 | 本文主要为入门级综述,未深入探讨深度学习模型的数学和计算方法的复杂性 | 介绍深度学习模型的基本架构,为数据科学家和跨学科研究人员提供基础知识 | 深度学习模型的核心架构,包括深度前馈神经网络、卷积神经网络、深度信念网络、自编码器和长短期记忆网络 | 机器学习 | NA | NA | 深度前馈神经网络、卷积神经网络、深度信念网络、自编码器、长短期记忆网络 | NA | NA |
49 | 2024-10-04 |
A natural language processing pipeline to advance the use of Twitter data for digital epidemiology of adverse pregnancy outcomes
2020, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.yjbinx.2020.100076
PMID:34417007
|
研究论文 | 研究开发了一种自然语言处理管道,用于从Twitter数据中识别不良妊娠结局,以推进数字流行病学研究 | 首次开发了一种基于BERT的自然语言处理方法,用于自动识别Twitter上的不良妊娠结局报告,并引入了一种规则过滤器来减少误报 | 研究主要基于Twitter数据,可能无法完全代表所有妊娠结局报告的情况 | 评估女性是否在Twitter上报告不良妊娠结局,并开发自然语言处理方法以自动识别这些报告 | Twitter上的不良妊娠结局报告,包括流产、死产、早产等 | 自然语言处理 | 妊娠相关疾病 | 自然语言处理 (NLP) | BERT | 文本 | 超过4亿条公开的Twitter推文,涉及超过10万名宣布怀孕的用户 |
50 | 2024-10-02 |
From a deep learning model back to the brain-Identifying regional predictors and their relation to aging
2020-08-15, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.25011
PMID:32320123
|
研究论文 | 本文提出了一种深度学习框架,用于从结构磁共振成像扫描中预测生理年龄,并识别与年龄预测相关的脑区 | 开发了一种推理方案,通过结合多个受试者的解释图,创建基于人群而非个体特异性的地图,提高了解释图的可重复性 | NA | 研究脑龄预测及其与脑区衰老过程的关系 | 结构磁共振成像扫描数据和脑区衰老过程 | 计算机视觉 | NA | 卷积神经网络 (CNN) | 卷积神经网络 (CNN) | 图像 | 10,176名受试者 |
51 | 2024-10-02 |
Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application
2020, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0237213
PMID:32797099
|
研究论文 | 本文探讨了使用卷积神经网络(CNN)对前列腺癌患者全身骨扫描图像进行骨转移分类的方法 | 本文提出了一套简单、快速且更准确的CNN架构,用于骨转移分类,并展示了其在骨扫描图像分类中的优越性能 | NA | 开发和展示一套用于自动分类全身骨扫描图像的简单但稳健的CNN模型 | 前列腺癌患者的全身骨扫描图像 | 计算机视觉 | 前列腺癌 | 卷积神经网络(CNN) | CNN | 图像 | NA |
52 | 2024-10-01 |
MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer's Disease: A Survey
2020-Jun-07, Sensors (Basel, Switzerland)
DOI:10.3390/s20113243
PMID:32517304
|
综述 | 本文综述了利用深度学习方法进行MRI分割和分类以诊断阿尔茨海默病(AD)的研究现状 | 本文总结了当前基于深度学习的MRI分割方法,并讨论了其在AD诊断中的应用 | 本文未具体讨论每种方法的局限性,而是集中在当前研究的概述和未来方向上 | 提供当前基于深度学习的MRI分割方法的概述,以用于AD的定量分析和诊断 | 人脑MRI图像及其在AD诊断中的应用 | 计算机视觉 | 阿尔茨海默病 | MRI | 卷积神经网络(CNN) | 图像 | NA |
53 | 2024-10-01 |
The Application of Deep Learning in Cancer Prognosis Prediction
2020-Mar-05, Cancers
IF:4.5Q1
DOI:10.3390/cancers12030603
PMID:32150991
|
综述 | 本文综述了深度学习在癌症预后预测中的应用 | 深度学习模型在处理大规模数据时表现出更高的预测准确性,且需要较少的数据工程 | NA | 探讨深度学习在癌症预后预测中的应用及其潜在优势 | 癌症预后预测模型 | 机器学习 | NA | 深度学习 | 深度学习模型 | 多组学数据(基因组数据、转录组数据和临床信息) | NA |
54 | 2024-10-01 |
Automated Hierarchy Evaluation System of Large Vessel Occlusion in Acute Ischemia Stroke
2020, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2020.00013
PMID:32265682
|
研究论文 | 本文介绍了一种基于香港医院管理局2016年所有急性缺血性卒中(AIS)患者记录的自动化大血管闭塞(LVO)评估系统 | 首次结合结构化临床数据和非结构化非对比CT(NCCT)影像数据进行急性期LVO诊断,性能优于以往报道的方法 | NA | 开发一种能够快速识别大血管闭塞的自动化评估系统,以提高急性缺血性卒中患者的再灌注治疗机会和神经恢复 | 急性缺血性卒中患者的大血管闭塞 | 机器学习 | 脑血管疾病 | 机器学习技术,包括逻辑回归、随机森林、支持向量机(SVM)和极端梯度提升(XGBoost) | 多层次模型 | 结构化临床数据和非对比CT(NCCT)影像数据 | 300名患者,其中200名用于模型训练,100名用于模型性能评估 |
55 | 2024-10-01 |
Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain-Computer Interface
2020, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2020.00584
PMID:32655353
|
研究论文 | 研究使用长短期记忆网络(LSTM)提高脑机接口中多类心理负荷检测的准确性 | 提出了使用卷积神经网络(CNN)和长短期记忆网络(LSTM)的新型深度学习框架,显著提高了多类心理负荷分类的准确性 | NA | 提高脑机接口中多类心理负荷检测的准确性 | 心理负荷的分类和检测 | 机器学习 | NA | 功能近红外光谱(fNIRS) | 长短期记忆网络(LSTM) | 脑活动信号 | 15名参与者(男女各半),每人进行10次心理负荷实验 |
56 | 2024-10-01 |
A Path Toward Explainable AI and Autonomous Adaptive Intelligence: Deep Learning, Adaptive Resonance, and Models of Perception, Emotion, and Action
2020, Frontiers in neurorobotics
IF:2.6Q3
DOI:10.3389/fnbot.2020.00036
PMID:32670045
|
研究论文 | 本文总结了生物神经网络模型如何帮助理解自主适应智能,并解释了这些模型的动态和涌现特性如何可解释,从而可以自信地应用于大规模应用 | 提出了Adaptive Resonance Theory (ART)算法,克服了反向传播和深度学习的计算问题,实现了无灾难性遗忘的快速分类 | 未提及 | 探讨可解释的人工智能和自主适应智能的发展路径 | 生物神经网络模型及其在感知、认知、情感和行动中的应用 | 机器学习 | NA | Adaptive Resonance Theory (ART) | NA | NA | NA |
57 | 2024-09-30 |
[Research on coronavirus disease 2019 (COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images]
2020-Aug-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202005056
PMID:32840070
|
研究论文 | 本文提出了一种基于深度可分离DenseNet的COVID-19检测方法,并在胸部X光图像上进行了验证 | 提出了深度可分离DenseNet模型,相比传统DenseNet减少了模型参数,同时保持了分类效果 | 未提及具体的局限性 | 快速诊断COVID-19 | COVID-19的胸部X光图像 | 计算机视觉 | COVID-19 | 深度学习 | DenseNet | 图像 | 2905张胸部X光图像 |
58 | 2024-09-27 |
Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network
2020, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0235783
PMID:32634167
|
研究论文 | 研究基于多阶段卷积神经网络(MS-CNN)的图像识别模型在商品图像智能识别中的应用及其识别性能 | 提出了一种基于MS-CNN模型的商品图像识别方法,并通过实验验证了其在不同噪声和标签错误条件下的鲁棒性 | 未提及具体的局限性 | 探索基于MS-CNN模型的商品图像识别方法的应用及其在不同条件下的识别性能 | 商品图像的颜色、形状和纹理特征,以及MS-CNN模型的识别效果 | 计算机视觉 | NA | 卷积神经网络(CNN) | 多阶段卷积神经网络(MS-CNN) | 图像 | 50,000张包含不同商品的图片 |
59 | 2024-09-27 |
Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning
2020, BME frontiers
IF:5.0Q1
DOI:10.34133/2020/8620932
PMID:37849965
|
研究论文 | 本文开发了一种可泛化的深度学习技术,用于从多个双光子显微镜系统获取的小鼠大脑图像中进行血管分割 | 该方法能够泛化到不同成像系统,并能高效处理大规模血管图像,计算速度比现有技术快10倍,深度大3倍 | NA | 开发一种可泛化且计算高效的深度学习框架,用于大脑血管的解剖建模 | 小鼠大脑的双光子显微镜血管图像 | 计算机视觉 | NA | 深度学习 | 深度学习框架 | 图像 | 多个小鼠大脑的血管图像 |
60 | 2024-09-14 |
Deep learning-based real-time volumetric imaging for lung stereotactic body radiation therapy: a proof of concept study
2020-12-18, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/abc303
PMID:33080578
|
研究论文 | 本文提出了一种基于生成对抗网络的实时体积成像方法,用于肺癌立体定向体部放疗中的实时运动管理和剂量验证 | 本文创新性地将生成对抗网络与感知监督相结合,从单一2D投影生成即时3D体积图像,并引入了感知损失和对抗监督以提高生成图像的准确性和真实性 | 本文仅在模拟数据上进行了验证,尚未在实际临床环境中进行测试 | 验证基于深度学习的实时体积成像方法在肺癌立体定向体部放疗中的可行性和有效性 | 肺癌患者在立体定向体部放疗中的实时体积成像 | 计算机视觉 | 肺癌 | 生成对抗网络 | 生成对抗网络 | 图像 | 20名接受肺癌立体定向体部放疗的患者,每个患者有9个呼吸相位的3D CT图像和相应的2D投影数据 |