深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202008-202008] [清除筛选条件]
当前共找到 27 篇文献,本页显示第 21 - 27 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2024-08-07
Feature Selection for Health Care Costs Prediction Using Weighted Evidential Regression
2020-Aug-06, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于加权证据回归的特征选择方法,用于预测医疗保健成本,并允许结果的解释 该方法结合了证据回归和k-近邻算法,能够在保持预测准确性的同时提供结果的解释性 NA 开发一种既能够达到黑盒方法预测准确性,又允许结果解释的医疗成本预测方法 医疗保健成本预测及其影响因素 机器学习 NA 证据回归(EVREG) 回归模型 医疗记录 使用了Tsuyama Chuo Hospital从2013年到2018年的日本健康记录
22 2024-08-07
Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks
2020-Aug-03, Sensors (Basel, Switzerland)
research paper 本文提出了一系列单阶段深度学习方法,用于实时检测铁路轨道关键部件,如轨道、螺栓和夹子。 采用YOLOv2模型,实现了93%的平均精度均值(mAP)和35张图像每秒(IPS)的检测速度。 较大的输入尺寸虽然提高了检测精度,但增加了推理时间。 提高铁路轨道检查的准确性和速度。 铁路轨道的关键部件,包括轨道、螺栓和夹子。 computer vision NA 深度学习 YOLOv2, FPN image NA
23 2024-08-07
A fully open-source framework for deep learning protein real-valued distances
2020-08-07, Scientific reports IF:3.8Q1
研究论文 本文介绍了一个名为protein distance net(PDNET)的全开源框架,用于深度学习蛋白质的实值距离预测 PDNET框架包含一个代表性数据集以及用于训练和测试深度学习方法的脚本,支持在网页浏览器中使用免费平台如Google Colab进行模型训练和测试 NA 推进深度学习方法在蛋白质结构预测中的应用 蛋白质的实值距离预测 机器学习 NA 深度学习 CNN 数据集 一个代表性数据集
24 2024-08-07
Deep learning based detection of intracranial aneurysms on digital subtraction angiography: A feasibility study
2020-Aug, The neuroradiology journal
研究论文 本文评估了商用级深度学习软件在全脑前后和侧位2D数字减影血管造影图像上检测颅内动脉瘤的可行性 使用商用级深度学习软件进行颅内动脉瘤检测,结果与更专业设计的深度学习技术相当 NA 评估商用级深度学习软件在数字减影血管造影图像上检测颅内动脉瘤的可行性 颅内动脉瘤的检测 计算机视觉 NA 深度学习 NA 图像 706张数字减影血管造影图像,来自240名患者(157名女性,平均年龄59岁;83名男性,平均年龄55岁)
25 2024-08-07
A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
2020-08, The European respiratory journal
研究论文 本文提出了一种全自动的深度学习系统,用于COVID-19的诊断和预后分析,通过常规的计算机断层扫描(CT)图像进行分析 该系统能够自动识别COVID-19与其他肺炎的区别,并成功将患者分为高风险和低风险组,且住院时间有显著差异 NA 开发一种快速筛查COVID-19并识别潜在高风险患者的工具,以优化医疗资源和早期预防 COVID-19患者和其他肺炎患者的CT图像 机器学习 COVID-19 深度学习 深度学习系统 图像 共收集了5372名患者的CT图像,其中1266名患者用于训练和外部验证
26 2024-08-07
Efficient prediction of drug-drug interaction using deep learning models
2020-Aug, IET systems biology IF:1.9Q3
研究论文 本文提出并实现了一种集成的卷积混合密度循环神经网络模型,用于高效预测药物-药物相互作用 提出的模型结合了卷积神经网络、循环神经网络和混合密度网络,通过广泛的比较分析显示出显著优于竞争模型的性能 目前文章未提及具体限制 旨在提高药物-药物相互作用预测的效率和准确性 药物-药物相互作用 机器学习 NA 卷积神经网络、循环神经网络、混合密度网络 卷积混合密度循环神经网络 NA NA
27 2024-08-07
A dual foveal-peripheral visual processing model implements efficient saccade selection
2020-Aug-03, Journal of vision IF:2.0Q2
研究论文 开发了一种视觉运动模型,实现视觉搜索作为焦点精度寻求策略,目标位置和类别从共同的生成过程中独立抽取 模型采用对数极坐标视网膜编码方式处理全视觉场,模仿生物学方式,并在感知层面利用强大的压缩率,实现视觉搜索的亚线性方式 NA 研究如何通过双中央凹-周边视觉处理模型实现高效的扫视选择 视觉搜索任务中的目标识别与定位 计算机视觉 NA 深度学习 CNN 图像 在大型杂乱图像中寻找数字的任务中测试模型
回到顶部