本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2024-08-07 |
High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients
2020-09-01, Journal of translational medicine
IF:6.1Q1
DOI:10.1186/s12967-020-02502-w
PMID:32873298
|
研究论文 | 本研究通过系统分析基因mRNA表达与临床结果的关系,探讨了非洲裔美国乳腺癌患者的生存差异分子基础,并确定了MKK3基因的高表达与更差的临床结果相关。 | 本研究首次确定了MKK3基因在非洲裔美国乳腺癌患者中的高表达与生存率下降的强相关性,并提出了MKK3-MYC蛋白相互作用作为减少乳腺癌生存种族差异的新治疗靶点。 | 本研究仅基于TCGA数据库中的乳腺癌患者样本,可能存在样本代表性不足的问题。 | 探讨非洲裔美国乳腺癌患者的生存差异分子基础,并寻找新的治疗靶点。 | 非洲裔美国乳腺癌患者及其基因表达与临床结果的关系。 | 数字病理学 | 乳腺癌 | 全卷积深度学习模型 | CNN | 图像 | 1055个乳腺癌样本 |
22 | 2024-08-07 |
Coronavirus Disease 2019 Deep Learning Models: Methodologic Considerations
2020-09, Radiology
IF:12.1Q1
DOI:10.1148/radiol.2020201178
PMID:32243239
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
23 | 2024-08-05 |
Predicting RNA SHAPE scores with deep learning
2020-09, RNA biology
IF:3.6Q2
DOI:10.1080/15476286.2020.1760534
PMID:32476596
|
研究论文 | 本文提出了一种机器学习方法,用于预测体内RNA的SHAPE评分 | 提出了一种结合RNA二级结构预测结果和核苷酸序列的机器学习方法 | 未提及具体的样本量和数据来源 | 提高计算RNA折叠模拟的准确性 | 体内RNA结构 | 机器学习 | NA | NA | NA | NA | NA |