本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 21 | 2024-08-06 |
Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy
2020-Sep, Medical physics
IF:3.2Q1
DOI:10.1002/mp.14374
PMID:32621789
|
研究论文 | 本文提出了一种深度学习模型,可以预测针对不同束角的前列腺强度调制放射治疗的帕累托最优剂量分布 | 首次研究了针对可变束数和方向的强度调制放射治疗(IMRT)前列腺计划的帕累托最优剂量预测 | 尚未讨论模型在临床工作中的长期验证和应用 | 研究深度学习在强度调制放射治疗中的剂量分布预测能力 | 70名前列腺癌患者的放射治疗计划 | 数字病理学 | 前列腺癌 | 深度学习 | 深度神经网络 | 剂量分布数据 | 70名患者,共生成35,000个计划 | NA | NA | NA | NA |
| 22 | 2024-08-07 |
LncMirNet: Predicting LncRNA-miRNA Interaction Based on Deep Learning of Ribonucleic Acid Sequences
2020-Sep-23, Molecules (Basel, Switzerland)
DOI:10.3390/molecules25194372
PMID:32977679
|
研究论文 | 本文提出了一种基于深度卷积神经网络的混合序列特征模型LncMirNet,用于预测长链非编码RNA(lncRNA)与微小RNA(miRNA)的相互作用 | LncMirNet通过引入四种基于序列的特征(k-mer、CTD、doc2vec和图嵌入特征)并采用直方图融合方法,提高了预测lncRNA-miRNA相互作用的准确性和AUC值 | NA | 预测lncRNA与miRNA之间的相互作用,以帮助探索新的调控模式 | lncRNA与miRNA的相互作用 | 机器学习 | NA | 深度卷积神经网络(CNN) | CNN | 序列 | 使用来自lncRNASNP2的真实数据集进行五折交叉验证 | NA | NA | NA | NA |
| 23 | 2024-08-07 |
Unveiling COVID-19 from CHEST X-Ray with Deep Learning: A Hurdles Race with Small Data
2020-09-22, International journal of environmental research and public health
DOI:10.3390/ijerph17186933
PMID:32971995
|
研究论文 | 本研究探讨了使用深度学习技术从胸部X光片中筛查COVID-19患者的可行性,并分析了小数据集带来的挑战 | 研究提供了关于使用深度学习进行COVID-19分类的CXR图像的方法论指南和统计结果的批判性阅读,并展示了使用较大公共非COVID CXR数据集进行迁移学习引入的偏差 | 研究受限于当前COVID-19数据集的小规模 | 验证使用CXR图像有效区分COVID-19的可能性 | COVID-19患者的胸部X光片 | 计算机视觉 | COVID-19 | 深度学习 | NA | 图像 | 中等规模的COVID-19 CXR数据集,由意大利北部一家主要急诊医院在COVID-19疫情高峰期间收集 | NA | NA | NA | NA |
| 24 | 2024-08-07 |
Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet
2020-Sep, Chaos, solitons, and fractals
DOI:10.1016/j.chaos.2020.109944
PMID:32536759
|
研究论文 | 本文提出了一种基于深度学习神经网络的方法nCOVnet,用于通过分析患者的X射线图像快速检测COVID-19 | 提出了一种基于深度学习神经网络的快速筛查方法nCOVnet,用于自动分析X射线图像以检测COVID-19 | NA | 开发一种快速筛查方法以帮助在COVID-19大流行期间进行有效的检测 | COVID-19患者的X射线图像 | 计算机视觉 | COVID-19 | 深度学习 | 神经网络 | 图像 | NA | NA | NA | NA | NA |
| 25 | 2024-08-07 |
Artificial Intelligence and Health in Nepal
2020-Sep, Nepal journal of epidemiology
IF:1.7Q3
DOI:10.3126/nje.v10i3.31649
PMID:33042595
|
短通讯 | 本文概述了人工智能、机器学习、深度学习和大数据等关键术语,并强调了人工智能在健康领域的应用对低收入国家如尼泊尔的重要性 | 强调尼泊尔需要培养本地的人工智能专家,并投资于本地资源,以开发适合国家或南亚地区的解决方案 | NA | 探讨人工智能在尼泊尔健康领域的应用潜力,并强调尼泊尔教育和卫生系统需要跟踪这些发展并本地化应用 | 人工智能在健康领域的应用及其对尼泊尔的影响 | 人工智能 | NA | 人工智能 | NA | 大数据 | NA | NA | NA | NA | NA |
| 26 | 2024-08-07 |
High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients
2020-09-01, Journal of translational medicine
IF:6.1Q1
DOI:10.1186/s12967-020-02502-w
PMID:32873298
|
研究论文 | 本研究通过系统分析基因mRNA表达与临床结果的关系,探讨了非洲裔美国乳腺癌患者的生存差异分子基础,并确定了MKK3基因的高表达与更差的临床结果相关。 | 本研究首次确定了MKK3基因在非洲裔美国乳腺癌患者中的高表达与生存率下降的强相关性,并提出了MKK3-MYC蛋白相互作用作为减少乳腺癌生存种族差异的新治疗靶点。 | 本研究仅基于TCGA数据库中的乳腺癌患者样本,可能存在样本代表性不足的问题。 | 探讨非洲裔美国乳腺癌患者的生存差异分子基础,并寻找新的治疗靶点。 | 非洲裔美国乳腺癌患者及其基因表达与临床结果的关系。 | 数字病理学 | 乳腺癌 | 全卷积深度学习模型 | CNN | 图像 | 1055个乳腺癌样本 | NA | NA | NA | NA |
| 27 | 2024-08-07 |
Coronavirus Disease 2019 Deep Learning Models: Methodologic Considerations
2020-09, Radiology
IF:12.1Q1
DOI:10.1148/radiol.2020201178
PMID:32243239
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 28 | 2024-08-05 |
Predicting RNA SHAPE scores with deep learning
2020-09, RNA biology
IF:3.6Q2
DOI:10.1080/15476286.2020.1760534
PMID:32476596
|
研究论文 | 本文提出了一种机器学习方法,用于预测体内RNA的SHAPE评分 | 提出了一种结合RNA二级结构预测结果和核苷酸序列的机器学习方法 | 未提及具体的样本量和数据来源 | 提高计算RNA折叠模拟的准确性 | 体内RNA结构 | 机器学习 | NA | NA | NA | NA | NA | NA | NA | NA | NA |