本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2025-10-06 |
The Role and Promise of Artificial Intelligence in Medical Toxicology
2020-10, Journal of medical toxicology : official journal of the American College of Medical Toxicology
IF:2.5Q3
DOI:10.1007/s13181-020-00769-5
PMID:32215849
|
综述 | 探讨人工智能在医学毒理学领域的应用前景与潜力 | 提出将深度学习与知识表示相结合的双重人工智能框架,以扩展毒物控制中心服务范围和增强社交媒体症状监测能力 | NA | 分析人工智能技术在医学毒理学领域的应用前景和发展方向 | 医学毒理学领域的人工智能应用 | 自然语言处理, 机器学习 | 中毒相关疾病 | 深度学习, 知识表示 | NA | 医学影像, 可穿戴设备数据, 社交媒体文本 | NA | NA | NA | NA | NA |
| 2 | 2025-10-06 |
Artificial intelligence versus expert: a comparison of rapid visual inferior vena cava collapsibility assessment between POCUS experts and a deep learning algorithm
2020-Oct, Journal of the American College of Emergency Physicians open
IF:1.6Q2
DOI:10.1002/emp2.12206
PMID:33145532
|
研究论文 | 开发深度学习算法评估危重患者下腔静脉塌陷度,并与POCUS专家进行对比 | 首次使用LSTM深度学习架构实时分析超声视频评估IVC塌陷度,为新手POCUS操作者提供辅助工具 | 样本量有限(训练集220个视频,测试集50个视频),专家与算法一致性仅为中等水平 | 创建能够评估下腔静脉塌陷度的深度学习算法,辅助新手POCUS操作者 | 危重患者的下腔静脉超声视频 | 计算机视觉 | 脓毒性休克 | 床旁超声(POCUS) | LSTM | 超声视频 | 训练集220个IVC超声视频,测试集50个新IVC超声视频 | NA | LSTM | Fleiss' κ | NA |
| 3 | 2025-05-23 |
Accuracy and reliability of automatic three-dimensional cephalometric landmarking
2020-Oct, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2020.02.015
PMID:32169306
|
系统综述 | 评估三维颅面图像自动标志点定位的准确性和可靠性 | 比较了知识基础、图谱基础和学习基础算法在自动标志点定位中的表现,发现深度学习方法的性能最佳 | 研究中存在患者选择和参考标准实施方面的偏倚风险,可能导致结果过于乐观 | 评估自动标志点定位技术在三维头影测量分析中的准确性和可靠性 | 人类头部计算机断层扫描或锥形束计算机断层扫描图像 | 医学图像分析 | NA | 自动标志点定位技术 | 深度学习 | 三维图像 | 11项研究,测试数据集样本量从18到77张图像不等 | NA | NA | NA | NA |
| 4 | 2025-05-23 |
Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis
2020-10, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2020.04.039
PMID:32334015
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了深度学习在无线胶囊内窥镜(WCE)中的应用效果 | 首次对深度学习在WCE中的应用进行系统性评价和荟萃分析 | 现有研究均为回顾性研究且存在较高偏倚风险 | 评估深度学习算法在WCE疾病检测中的性能表现 | 无线胶囊内窥镜图像数据 | 计算机视觉 | 肠道疾病 | 深度学习 | 神经网络 | 医学影像 | 19项研究(45篇原始文献) | NA | NA | NA | NA |
| 5 | 2025-10-07 |
Virtual Molecular Projections and Convolutional Neural Networks for the End-to-End Modeling of Nanoparticle Activities and Properties
2020-10-20, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.0c02878
PMID:32970421
|
研究论文 | 本研究开发了一种基于虚拟分子投影和卷积神经网络的端到端方法,用于从纳米结构直接建模纳米颗粒活性和性质 | 提出虚拟分子投影作为纳米结构的多维数字化表示方法,并首次将CNN应用于直接从纳米结构端到端预测纳米颗粒活性和物理化学性质 | 仅使用77个纳米颗粒样本进行建模,样本规模相对较小 | 开发能够从复杂纳米结构直接预测纳米颗粒活性和性质的深度学习模型 | 纳米颗粒及其纳米结构 | 机器学习 | NA | 虚拟分子投影 | CNN | 多维数字化纳米结构数据 | 77个具有不同活性和/或物理化学性质的纳米颗粒 | NA | 卷积神经网络 | 预测结果与实验结果的相关系数 | NA |
| 6 | 2025-02-21 |
A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition
2020-Oct-12, Sensors (Basel, Switzerland)
DOI:10.3390/s20205770
PMID:33053720
|
研究论文 | 本文提出了一种使用双向长短期记忆网络(BiLSTM)和跳链条件随机场(SCCRF)的两阶段混合深度机器学习方法,用于识别并发和交错的人类活动 | 创新点在于结合了BiLSTM和SCCRF两种技术,分别用于识别并发和交错活动,提高了复杂活动识别的准确性 | 未提及具体局限性 | 研究目标是提高复杂人类活动识别的准确性,特别是在并发和交错活动的情况下 | 研究对象是人类活动,特别是并发和交错的活动 | 机器学习 | NA | 双向长短期记忆网络(BiLSTM),跳链条件随机场(SCCRF) | BiLSTM, SCCRF | 活动数据 | 使用了公开可用的智能家居环境数据集 | NA | NA | NA | NA |
| 7 | 2025-10-07 |
Automatic multi-needle localization in ultrasound images using large margin mask RCNN for ultrasound-guided prostate brachytherapy
2020-10-09, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/aba410
PMID:32640435
|
研究论文 | 提出基于深度学习的超声图像多针自动定位工作流,用于超声引导前列腺近距离放疗 | 提出大边界掩码R-CNN模型和改进的基于密度的空间聚类算法,实现多针同时定位 | 仅在23名患者数据上进行验证,样本量有限 | 开发快速自动的多针数字化方法,提升前列腺近距离放疗效率 | 超声引导高剂量率前列腺近距离放疗患者 | 计算机视觉 | 前列腺癌 | 超声成像 | CNN, R-CNN | 超声图像 | 23名患者,共339根针 | NA | Mask R-CNN, LMMask R-CNN | 针杆误差, 针尖误差 | NA |
| 8 | 2024-12-12 |
On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
2020-10-19, eLife
IF:6.4Q1
DOI:10.7554/eLife.59780
PMID:33074102
|
研究论文 | 本文探讨了深度学习在生物图像分析中的客观性、可靠性和有效性 | 提出了一种集成数据标注、真实值估计和模型训练的分析流程,以提高深度学习模型在生物图像分析中的客观性、可靠性和有效性 | 本文主要基于小鼠和斑马鱼的数据进行研究,可能无法完全推广到其他生物或实验条件 | 评估集成数据标注、真实值估计和模型训练的深度学习分析流程的有效性 | 小鼠和斑马鱼的荧光标记图像 | 计算机视觉 | NA | 深度学习 | 深度学习模型(未具体说明模型类型) | 图像 | 来自两个模式生物(小鼠、斑马鱼)和五个实验室的数据 | NA | NA | NA | NA |
| 9 | 2024-11-08 |
Accelerating GluCEST imaging using deep learning for B0 correction
2020-10, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.28289
PMID:32301185
|
研究论文 | 本文提出了一种基于深度学习的算法,用于加速GluCEST成像中的B0校正 | 本文提出了一种新的深度学习算法,结合了宽激活神经网络块,以解决GluCEST成像中由于B0不均匀性导致的长时间采集和高噪声比问题 | NA | 加速GluCEST成像并提高信号噪声比 | 大脑中的谷氨酸分布 | 计算机视觉 | NA | GluCEST MRI | 深度残差网络 | 图像 | NA | NA | NA | NA | NA |
| 10 | 2024-10-11 |
Advanced Deep Learning Techniques Applied to Automated Femoral Neck Fracture Detection and Classification
2020-10, Journal of digital imaging
IF:2.9Q2
DOI:10.1007/s10278-020-00364-8
PMID:32583277
|
研究论文 | 使用深度学习和高级数据增强技术进行股骨颈骨折的自动检测和分类 | 采用生成对抗网络(GAN)和数字重建放射图像(DRR)进行数据增强,提高了股骨颈骨折诊断和分类的准确性 | 研究仅限于回顾性分析,且样本量相对较小 | 开发一种能够准确诊断和分类股骨颈骨折的深度学习工具 | 股骨颈骨折的诊断和分类 | 计算机视觉 | 骨科疾病 | 深度学习 | 卷积神经网络(CNN) | 图像 | 1063张AP髋关节X光片,来自550名患者 | NA | NA | NA | NA |
| 11 | 2024-10-11 |
Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis
2020-10, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2020.101759
PMID:32623277
|
研究论文 | 本文探讨了在医学图像分析中使用深度学习处理噪声标签的技术和补救措施 | 本文开发了新的方法来对抗噪声标签的负面影响,并提供了针对不同类型噪声标签的缓解方法的建议 | 本文主要集中在噪声标签的处理上,未涉及其他可能影响深度学习模型性能的因素 | 帮助医学图像分析研究人员和开发者选择和设计有效处理深度学习中噪声标签的新技术 | 医学图像分析中的噪声标签问题 | 计算机视觉 | NA | 深度学习 | 深度模型 | 图像 | 三个医学影像数据集 | NA | NA | NA | NA |
| 12 | 2024-10-06 |
Introducing the GEV Activation Function for Highly Unbalanced Data to Develop COVID-19 Diagnostic Models
2020-10, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2020.3012383
PMID:32750973
|
研究论文 | 本文提出了一种基于广义极值分布(GEV)的新激活函数,用于处理高度不平衡数据,并开发COVID-19诊断模型 | 本文创新性地提出了基于广义极值分布(GEV)的激活函数,相较于传统的sigmoid激活函数,在处理高度不平衡数据时表现更优 | 本文未详细讨论GEV激活函数在其他类型数据或疾病诊断中的适用性 | 开发一种新的激活函数,以提高在高度不平衡数据情况下COVID-19诊断模型的性能 | COVID-19诊断模型 | 机器学习 | COVID-19 | 深度学习 | NA | 图像 | 1909例健康胸部X光片和84例COVID-19 X光片 | NA | NA | NA | NA |
| 13 | 2024-09-01 |
DDxNet: a deep learning model for automatic interpretation of electronic health records, electrocardiograms and electroencephalograms
2020-10-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-020-73126-9
PMID:33009423
|
研究论文 | 本文开发了DDxNet,一种用于时间变化临床数据(如电子健康记录、心电图和脑电图)的深度学习模型,旨在提高诊断任务的准确性和效率 | DDxNet能够处理多种模态(如ECG、EEG、EHR)、不同级别的特征化需求(如异常检测、表型分析)和数据保真度(如单导联ECG、22通道EEG),并能快速开发模型 | NA | 开发一种通用的深度学习模型,以快速准确地解释电子健康记录、心电图和脑电图,提高诊断效率 | 电子健康记录、心电图和脑电图 | 机器学习 | NA | 深度学习 | 深度架构 | 时间变化临床数据 | NA | NA | NA | NA | NA |
| 14 | 2024-08-07 |
Beyond K-complex binary scoring during sleep: probabilistic classification using deep learning
2020-10-13, Sleep
IF:5.3Q1
DOI:10.1093/sleep/zsaa077
PMID:32301485
|
研究论文 | 本文提出了一种基于深度神经网络和高斯过程的算法,用于自动分类K复合波(KCs),这是一种睡眠阶段2的脑电图标志 | 该算法采用概率分类方法,能够给出输入波形是K复合波的概率,从0%到100%,并且表现优于现有的K复合波评分算法 | NA | 开发一种自动化的概率K复合波分类算法,以更深入地探索睡眠中K复合波与临床结果之间的关系 | K复合波的自动分类 | 机器学习 | NA | 深度神经网络和高斯过程 | 深度神经网络 | 脑电图数据 | 训练数据包括来自19名健康年轻参与者的手动评分睡眠阶段2的K复合波,以及来自克利夫兰家庭研究的700个独立记录 | NA | NA | NA | NA |
| 15 | 2024-08-07 |
A deep learning approach to detect Covid-19 coronavirus with X-Ray images
2020 Oct-Dec, Biocybernetics and biomedical engineering
IF:5.3Q1
DOI:10.1016/j.bbe.2020.08.008
PMID:32921862
|
研究论文 | 本文提出了一种利用X射线图像和深度学习技术检测COVID-19冠状病毒的诊断方法 | 该研究通过数据增强和两阶段深度网络设计,提高了模型的泛化能力和分类准确性 | NA | 开发一种快速准确的COVID-19检测方法,以应对全球病例增加和检测试剂盒有限的挑战 | COVID-19冠状病毒的检测 | 计算机视觉 | COVID-19 | 深度学习 | 深度网络 | 图像 | 1832张X射线图像 | NA | NA | NA | NA |
| 16 | 2024-08-07 |
Transcranial MR Imaging-Guided Focused Ultrasound Interventions Using Deep Learning Synthesized CT
2020-10, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A6758
PMID:32883668
|
研究论文 | 本研究探讨了使用深度学习技术将MR图像直接转换为合成CT图像,以简化经颅MR引导聚焦超声治疗计划的可行性 | 本研究首次使用深度学习技术将MR图像转换为合成CT图像,用于经颅MR引导聚焦超声治疗计划 | NA | 简化经颅MR引导聚焦超声治疗的临床工作流程 | 深度学习技术在将MR图像转换为合成CT图像中的应用 | 计算机视觉 | NA | 深度学习 | U-Net神经网络 | 图像 | 41名受试者(平均年龄66.4±11.0岁,其中15名女性) | NA | NA | NA | NA |
| 17 | 2024-08-07 |
Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks
2020-Oct, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.13024
PMID:32991783
|
研究论文 | 本研究提出了一种基于深度学习的自动分割和施用器重建方法,用于宫颈癌近距离放射治疗(BT)的计算机断层扫描(CT)规划,具有高精度和高效率 | 提出了一种新的三维(3D)卷积神经网络(CNN)架构DSD-UNET,用于自动分割高危临床目标体积(HR-CTV)和危险器官(OARs),并在施用器重建中实现了高精度的分割 | NA | 提高宫颈癌近距离放射治疗规划的效率和一致性 | 宫颈癌患者的CT图像分割和施用器重建 | 计算机视觉 | 宫颈癌 | 3D卷积神经网络 | DSD-UNET | CT图像 | 91名接受CT基础宫颈癌近距离放射治疗的患者 | NA | NA | NA | NA |
| 18 | 2024-08-07 |
Deep learning-assisted comparative analysis of animal trajectories with DeepHL
2020-10-20, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-020-19105-0
PMID:33082335
|
研究论文 | 本研究介绍了DeepHL平台,一个利用深度学习辅助进行动物运动轨迹比较分析的工具 | DeepHL平台采用基于注意力机制的深度神经网络,自动检测并突出显示轨迹中特定于某个群体的特征段,帮助生物学家揭示这些特征段的潜在意义 | NA | 旨在通过深度学习技术辅助生物学家进行动物行为轨迹的比较分析 | 多种动物(如蠕虫、昆虫、老鼠、熊和海鸟)的运动轨迹 | 机器学习 | NA | 深度学习 | 基于注意力机制的深度神经网络 | 轨迹数据 | 多种动物的运动轨迹,范围从毫米到数百公里 | NA | NA | NA | NA |
| 19 | 2024-08-07 |
Non-invasive decision support for NSCLC treatment using PET/CT radiomics
2020-10-16, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-020-19116-x
PMID:33067442
|
研究论文 | 本文报道了一种基于F-FDG-PET/CT的深度学习模型,用于非小细胞肺癌(NSCLC)治疗决策支持,特别是EGFR突变状态的预测。 | 该研究开发了一种非侵入性的深度学习评分(EGFR-DLS),能够精确量化NSCLC患者的EGFR突变状态,有助于指导治疗选择。 | NA | 旨在开发一种新的方法来帮助指导非小细胞肺癌的治疗选择。 | 非小细胞肺癌(NSCLC)患者的治疗决策支持。 | 机器学习 | 肺癌 | PET/CT | 深度学习模型 | 图像 | 多个机构的患者群体 | NA | NA | NA | NA |
| 20 | 2024-08-07 |
Exploration into biomarker potential of region-specific brain gene co-expression networks
2020-10-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-020-73611-1
PMID:33051491
|
研究论文 | 本研究利用GTEx项目的RNA表达数据构建了正常大脑的基因共表达网络(GCN),并基于大脑结构将其整合为六个大脑迷你GCN,以探索其作为生物标志物的潜力 | 首次构建了基于大脑区域的基因共表达网络,并发现这些网络中的基因在肿瘤中显示出更高的突变率 | NA | 探索大脑区域特异性基因共表达网络作为生物标志物的潜力 | 大脑区域特异性基因共表达网络及其在肿瘤中的突变情况 | 基因组学 | 脑肿瘤 | RNA表达分析 | 深度学习分类器(Gene Oracle) | 基因表达数据 | 来自GTEx项目的多个大脑区域样本 | NA | NA | NA | NA |