本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2024-12-15 |
Multimodality Imaging and Artificial Intelligence for Tumor Characterization: Current Status and Future Perspective
2020-Nov, Seminars in nuclear medicine
IF:4.6Q1
DOI:10.1053/j.semnuclmed.2020.07.003
PMID:33059823
|
研究论文 | 本文探讨了多模态影像与人工智能在肿瘤特征分析中的应用现状及未来展望 | 人工智能通过机器学习和深度学习,能够整合大量异质性数据进行分析,提供自动化和可重复的定量影像生物标志物 | 需要设定质量标准,包括影像采集的标准化、模型开发的透明性、验证和测试的高质量过程以及算法的更好可解释性 | 研究多模态影像与人工智能在肿瘤特征分析中的应用,以实现精准肿瘤学 | 肿瘤的特征分析和分子表达的非侵入性监测 | 计算机视觉 | NA | 机器学习,深度学习 | NA | 影像 | NA |
2 | 2024-12-06 |
Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review
2020-11, Oral oncology
IF:4.0Q2
|
综述 | 本文系统综述了人工智能在头颈部癌前病变和癌症诊断中的应用及其诊断准确性 | 本文首次系统综述了人工智能在头颈部癌前病变和癌症诊断中的应用,并评估了其诊断准确性 | 本文发现大多数研究存在高偏倚风险,可能导致准确率被高估,且缺乏对其他头颈部病理的AI诊断证据 | 评估人工智能在头颈部癌前病变和癌症诊断中的应用及其诊断准确性 | 头颈部癌前病变和癌症,包括口腔上皮发育不良、口腔黏膜下纤维化、口腔鳞状细胞癌和口咽鳞状细胞癌 | 数字病理 | 头颈部癌 | 人工智能 | 监督学习方法 | 图像 | 11项研究,涉及40-270张全切片图像 |
3 | 2024-10-12 |
[Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a self-adaptive Unet network]
2020-Nov-30, Nan fang yi ke da xue xue bao = Journal of Southern Medical University
|
研究论文 | 研究基于自适应Unet网络在鼻咽癌放疗中对危及器官的自动分割精度 | 提出了基于三维Unet的改进网络AUnet,并引入了器官大小作为先验知识来优化卷积核设计,提高了网络对不同大小器官特征的提取能力 | AUnet在视神经和视交叉的分割结果与手动分割存在显著差异 | 研究鼻咽癌放疗中危及器官自动分割的准确性 | 鼻咽癌患者的危及器官 | 计算机视觉 | 鼻咽癌 | 自适应直方图均衡化算法 | AUnet | CT图像 | 147例鼻咽癌患者 |
4 | 2024-10-11 |
Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation
2020-11, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2020.104037
PMID:33065387
|
研究论文 | 本文提出了一种基于多任务深度学习的胸部CT影像分析工具,用于COVID-19肺炎的分类和分割 | 本文提出了一种新的多任务深度学习模型,通过联合执行分割、分类和重建任务来识别COVID-19患者并分割病变区域 | 本文未提及具体的局限性 | 开发一种自动化的分类和分割工具,以帮助筛查COVID-19肺炎并评估其严重程度 | COVID-19肺炎患者的胸部CT影像 | 计算机视觉 | COVID-19 | 深度学习 | 多任务深度学习模型 | 影像 | 1369名患者,其中包括449名COVID-19患者、425名正常患者、98名肺癌患者和397名其他病理患者 |
5 | 2024-10-09 |
Deep learning-based medical image segmentation with limited labels
2020-11-20, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/abc363
PMID:33086205
|
研究论文 | 本文提出了一种基于深度学习的医学图像分割方法,利用变形图像配准技术生成伪轮廓,以减少对大量标注数据的依赖 | 本文创新性地使用变形图像配准技术生成伪轮廓,结合少量标注数据训练深度学习模型,提高了在有限标注数据情况下的分割精度 | 本文仅在特定数据集上进行了验证,尚未在更广泛的数据集上进行测试 | 研究如何在有限标注数据的情况下,利用深度学习技术实现准确的医学图像分割 | 本文主要研究了下颌骨、腮腺和下颌下腺的分割 | 计算机视觉 | NA | 变形图像配准 | 深度学习模型 | 医学图像 | 10个标注的TCIA数据集和50个未标注的CT扫描图像 |
6 | 2024-10-07 |
Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19 Detection from X-rays
2020-Nov, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2020.105608
PMID:32599338
|
研究论文 | 本文提出了一种利用深度学习技术从X光片中自动检测肺部疾病和COVID-19的方法 | 本文首次提出了一种基于深度学习的COVID-19自动检测方法,并结合了肺炎检测和症状定位 | 实验数据来自不同机构,可能存在数据偏差 | 提供一种自动且快速的COVID-19诊断方法 | COVID-19和肺炎的检测与定位 | 计算机视觉 | 肺部疾病 | 深度学习 | NA | 图像 | 6523张胸部X光片 |
7 | 2024-09-14 |
A systematic review on recent trends in transmission, diagnosis, prevention and imaging features of COVID-19
2020-Nov, Process biochemistry (Barking, London, England)
DOI:10.1016/j.procbio.2020.08.016
PMID:32843849
|
综述 | 本文综述了COVID-19的传播方式、诊断方法、预防措施以及影像学特征的最新趋势 | 介绍了人工智能和深度学习算法在COVID-19诊断中的应用潜力,并提出了无人机热成像筛查等新技术的发展方向 | 未详细讨论新技术在实际应用中的可行性和局限性 | 探讨COVID-19的传播、诊断、预防和影像学特征的最新进展 | COVID-19的传播方式、诊断方法、预防措施以及影像学特征 | NA | 传染病 | 计算机断层扫描(CT)、反转录聚合酶链反应(RT-PCR)、免疫荧光色谱法 | 深度学习算法 | NA | NA |
8 | 2024-09-02 |
Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules
2020-Nov, Journal of thoracic disease
IF:2.1Q3
DOI:10.21037/jtd-2019-cptn-03
PMID:33282401
|
综述 | 本文综述了人工智能在肺结节评估中的应用,特别是深度学习和卷积神经网络在肺结节检测、分割和分类中的进展 | 深度学习和卷积神经网络在肺结节检测和分类中显示出有希望的结果 | 仍存在一些缺陷和挑战,需要将这些进展应用于常规临床实践中 | 旨在概述人工智能在肺结节检测和特征化方面的最新进展,最终目标是预测和分类肺癌 | 肺结节 | 机器学习 | 肺癌 | 深度学习 (DL) 和卷积神经网络 (CNNs) | 卷积神经网络 (CNNs) | 图像 | NA |
9 | 2024-08-22 |
Image quality improvement of single-shot turbo spin-echo magnetic resonance imaging of female pelvis using a convolutional neural network
2020-Nov-20, Medicine
IF:1.3Q2
DOI:10.1097/MD.0000000000023138
PMID:33217817
|
研究论文 | 开发了一种基于深度学习的方法,用于提高单次激发涡轮自旋回波(SSTSE)磁共振成像的女性盆腔图像质量 | 使用卷积神经网络(CNN)生成的DL-SSTSE图像在图像质量上显著优于传统的SSTSE图像,并且在运动伪影鲁棒性和采集时间效率方面保持了SSTSE成像的优势 | NA | 比较基于深度学习的单次激发涡轮自旋回波(DL-SSTSE)图像与涡轮自旋回波(TSE)和传统SSTSE图像在图像质量上的差异 | 女性盆腔的SSTSE磁共振成像图像 | 计算机视觉 | NA | 磁共振成像(MRI) | 卷积神经网络(CNN) | 图像 | 105个训练样本和21个测试样本 |
10 | 2024-08-06 |
Evaluation of Survival Outcomes of Endovascular Versus Open Aortic Repair for Abdominal Aortic Aneurysms with a Big Data Approach
2020-Nov-30, Entropy (Basel, Switzerland)
DOI:10.3390/e22121349
PMID:33265931
|
研究论文 | 本研究比较了开放主动脉修复与内血管主动脉修复在腹主动脉瘤患者中的生存结果 | 采用了基于深度学习的分析策略,提供了一种新的大数据方法来评估rAAA的治疗效果 | 虽然通过大数据方法模仿了随机临床试验,但实际操作中存在可行性问题 | 客观比较开放主动脉修复和内血管主动脉修复的生存结果 | 7826名腹主动脉瘤患者 | 数字病理学 | 腹主动脉瘤 | 大数据分析 | 深度学习 | 医疗数据 | 7826名患者 |
11 | 2024-08-07 |
Classification and Detection of Breathing Patterns with Wearable Sensors and Deep Learning
2020-Nov-13, Sensors (Basel, Switzerland)
DOI:10.3390/s20226481
PMID:33202857
|
研究论文 | 本研究开发了一种非侵入式呼吸模式分析系统,利用可穿戴传感器和深度学习技术自动检测临床上有意义的呼吸模式 | 本研究通过构建合成数据集并使用一维卷积神经网络,实现了对不同呼吸事件的高精度检测和分类 | 本研究仅在模拟的正常志愿者中进行了测试,实际应用中可能需要进一步验证 | 开发一种能够快速评估呼吸模式的技术,以应对紧急医疗情况 | 研究对象为100名模拟各种呼吸事件的正常志愿者 | 机器学习 | NA | 一维卷积神经网络 | CNN | 加速度计和陀螺仪数据 | 100名正常志愿者 |
12 | 2024-08-07 |
AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks
2020-Nov-10, International journal of molecular sciences
IF:4.9Q2
DOI:10.3390/ijms21228424
PMID:33182567
|
研究论文 | 本文开发了一种新的神经网络模型AK-Score,用于预测蛋白质-配体复合物的结合亲和力,该模型使用多个独立训练的3D卷积神经网络的集成 | AK-Score模型的Pearson相关系数为0.827,高于现有最先进的结合亲和力预测评分函数 | NA | 提高蛋白质-配体结合亲和力的预测准确性,以促进理性药物设计 | 蛋白质-配体复合物的结合亲和力 | 机器学习 | NA | 3D卷积神经网络 | CNN | 结构数据 | 训练集包含3772个蛋白质-配体复合物,测试集包含285个复合物 |
13 | 2024-08-07 |
Reimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology
2020-11, JCO clinical cancer informatics
IF:3.3Q2
DOI:10.1200/CCI.20.00110
PMID:33166198
|
研究论文 | 本文讨论了人工智能和机器学习在数字病理学中用于疾病预后、肿瘤基因组和分子改变预测以及治疗反应预测的应用 | 人工智能方法有望克服传统TNM分期和肿瘤分级方法的局限性,提供独立于肿瘤阶段和级别的直接预后预测 | 文章提到了验证、解释性和报销等方面的潜在挑战,这些需要在广泛临床部署之前得到解决 | 探讨人工智能在数字病理学和肿瘤学中的应用及其未来机会 | 数字病理学中的疾病预后、肿瘤基因组和分子改变预测以及治疗反应预测 | 数字病理学 | NA | 人工智能 (AI), 机器学习 (ML) | 深度学习 (DL) | 图像 | NA |
14 | 2024-08-07 |
Rapid tissue oxygenation mapping from snapshot structured-light images with adversarial deep learning
2020-11, Journal of biomedical optics
IF:3.0Q2
DOI:10.1117/1.JBO.25.11.112907
PMID:33251783
|
research paper | 本文介绍了一种名为OxyGAN的数据驱动、内容感知方法,用于直接从单个结构光图像估计组织氧合情况 | OxyGAN使用监督生成对抗网络,能够从单个结构光图像中快速且准确地估计组织氧合情况,且处理速度比以往工作快约10倍 | NA | 开发一种快速且准确的方法来估计组织氧合情况,以支持多种临床应用 | 人体食道、手、脚以及猪结肠的组织氧合情况 | machine learning | NA | 空间频率域成像(SFDI) | 生成对抗网络(GAN) | 图像 | 包括人体食道、手、脚以及猪结肠的样本 |
15 | 2024-08-07 |
Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning
2020-Nov-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.395934
PMID:33282495
|
研究论文 | 本文提出了一种基于深度学习的无标签3D分割框架,用于光学相干断层扫描(OCT)图像中视神经头(ONH)的分割,无需手动重新分割数据即可跨设备应用。 | 该研究创新性地开发了两种深度学习网络:'增强器'用于提高OCT图像质量和统一图像特征,'ONH-Net'用于3D分割6种ONH组织,实现了跨设备的高性能分割。 | 目前该方法的临床应用受限于其设备特定性和准备手动分割数据(训练数据)的难度。 | 旨在开发一种易于跨OCT设备应用的深度学习3D分割框架,无需手动分割数据。 | 研究对象为光学相干断层扫描图像中的视神经头组织。 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 涉及三种不同设备的OCT图像 |
16 | 2024-08-07 |
Power-law scaling to assist with key challenges in artificial intelligence
2020-11-12, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-020-76764-1
PMID:33184422
|
研究论文 | 本文探讨了幂律缩放在深度学习中的应用,特别是在手写数字识别任务中,优化后的测试错误率随着数据库大小增加而趋近于零的幂律收敛现象 | 提出幂律缩放有助于解决当前人工智能应用中的关键挑战,并能预先估计数据集大小以达到所需的测试准确度 | NA | 研究幂律缩放在深度学习中的应用及其对人工智能关键挑战的辅助作用 | 深度学习中的幂律缩放现象及其在手写数字识别任务中的应用 | 机器学习 | NA | 深度学习 | NA | 图像 | 涉及最大数据集的测试错误率接近当前最先进算法的水平 |
17 | 2024-08-07 |
COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
2020-11-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-020-76550-z
PMID:33177550
|
研究论文 | 本文介绍了COVID-Net,一个专门为从胸部X光图像中检测COVID-19病例设计的深度卷积神经网络,并公开了该网络和COVIDx数据集 | COVID-Net是首批公开的用于从胸部X光图像中检测COVID-19的网络设计之一 | COVID-Net并非一个生产就绪的解决方案,而是希望加速开发高度准确的深度学习解决方案 | 开发一个有效的工具来帮助筛查COVID-19感染患者 | COVID-19病例的胸部X光图像 | 计算机视觉 | COVID-19 | 深度卷积神经网络 | CNN | 图像 | 13,975张胸部X光图像,涉及13,870个病例 |
18 | 2024-08-07 |
Toward Preparing a Knowledge Base to Explore Potential Drugs and Biomedical Entities Related to COVID-19: Automated Computational Approach
2020-Nov-10, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/21648
PMID:33055059
|
研究论文 | 本文通过自动化计算方法,从公开的科学文献和相关资源中挖掘信息,构建了一个专门针对COVID-19的知识库平台,用于探索与COVID-19相关的潜在药物和生物医学实体。 | 本文首次开发了一个专门针对COVID-19的知识库平台,通过自然语言处理、情感分析和深度学习等技术,自动挖掘和标记科学文献中的信息,以评估药物对疾病的有效性。 | NA | 探索与冠状病毒相关疾病(包括COVID-19)相关的潜在药物和生物医学实体,并通过自动化计算方法从科学文献中提取信息。 | COVID-19及相关冠状病毒疾病,包括相关的药物、基因和疾病。 | 生物信息学 | COVID-19 | 自然语言处理、情感分析、深度学习 | NA | 文本 | 1805种疾病、2454种药物、1910个基因 |
19 | 2024-08-07 |
Novel Deep Learning Network Analysis of Electrical Stimulation Mapping-Driven Diffusion MRI Tractography to Improve Preoperative Evaluation of Pediatric Epilepsy
2020-11, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2020.2977531
PMID:32142416
|
研究论文 | 研究深度卷积神经网络(DCNN)在儿童局灶性癫痫(FE)术前评估中作为新的影像工具的临床效用 | DCNN轨迹分类在非侵入性检测ESM空间分辨率内的功能区域方面表现出色,准确率达到98% | NA | 探讨DCNN轨迹分类在儿童局灶性癫痫术前评估中的临床效用 | 儿童局灶性癫痫患者 | 机器学习 | 癫痫 | 扩散MRI轨迹图 | CNN | 影像 | 89名儿童局灶性癫痫患者 |
20 | 2024-08-07 |
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
2020-Nov, Chaos, solitons, and fractals
DOI:10.1016/j.chaos.2020.110121
PMID:32834633
|
研究论文 | 本文比较了五种深度学习方法在预测COVID-19时间序列数据中的应用 | 本文首次比较了多种深度学习模型在COVID-19病例预测中的性能,并发现VAE模型的表现优于其他算法 | 研究基于小量数据进行,可能影响模型的泛化能力 | 优化医疗资源分配并减缓COVID-19疾病的进展 | COVID-19的新感染和康复病例数 | 机器学习 | COVID-19 | 深度学习 | RNN, LSTM, BiLSTM, GRUs, VAE | 时间序列数据 | 每日确诊和康复病例数据,来自意大利、西班牙、法国、中国、美国和澳大利亚六个国家 |