深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202012-202012] [清除筛选条件]
当前共找到 25 篇文献,本页显示第 1 - 20 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1 2024-10-11
Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers-A study to show how popularity is affecting accuracy in social media
2020-Dec, Applied soft computing IF:7.2Q1
研究论文 研究通过深度学习分类器分析COVID-19相关推文的情绪,探讨社交媒体中流行度对准确性的影响 提出了一种基于高斯隶属函数的模糊规则库来正确识别推文情绪,并验证了深度学习分类器在推文情绪分析中的应用 研究仅分析了特定时间段内的推文,未涵盖更广泛的时间范围 探讨COVID-19相关推文中情绪分析的准确性,并提出改进方法 COVID-19相关推文及其情绪分析 自然语言处理 NA 深度学习 深度学习分类器 文本 分析了23,000条最常转发的推文和226,668条推文
2 2024-10-08
M 3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening From CT Imaging
2020-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种用于多类肺部肺炎筛查的深度学习系统M 3Lung-Sys,通过CT影像进行诊断 该系统仅由两个2D CNN网络组成,分别用于切片级和患者级分类,能够从大量CT切片中提取特征并恢复不同切片间的时间信息 NA 旨在提高COVID-19等肺部肺炎的准确诊断,以便及时隔离和治疗 COVID-19、H1N1、CAP和健康病例的CT影像 计算机视觉 肺部疾病 深度学习 CNN 影像 734名患者(251名健康人,245名COVID-19患者,105名H1N1患者,133名CAP患者)
3 2024-09-14
Deep learning-based real-time volumetric imaging for lung stereotactic body radiation therapy: a proof of concept study
2020-12-18, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种基于生成对抗网络的实时体积成像方法,用于肺癌立体定向体部放疗中的实时运动管理和剂量验证 本文创新性地将生成对抗网络与感知监督相结合,从单一2D投影生成即时3D体积图像,并引入了感知损失和对抗监督以提高生成图像的准确性和真实性 本文仅在模拟数据上进行了验证,尚未在实际临床环境中进行测试 验证基于深度学习的实时体积成像方法在肺癌立体定向体部放疗中的可行性和有效性 肺癌患者在立体定向体部放疗中的实时体积成像 计算机视觉 肺癌 生成对抗网络 生成对抗网络 图像 20名接受肺癌立体定向体部放疗的患者,每个患者有9个呼吸相位的3D CT图像和相应的2D投影数据
4 2024-08-30
A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images
2020-Dec, European radiology IF:4.7Q1
研究论文 利用深度学习模型自动检测COVID-19患者的胸部CT图像中的异常,并与放射科住院医师的定量判断性能进行比较 深度学习模型在检测COVID-19肺炎方面表现出比放射科住院医师更高的敏感性和诊断效率 NA 开发和验证一种深度学习算法,用于自动检测COVID-19患者的胸部CT图像中的肺炎病变 COVID-19患者的胸部CT图像 计算机视觉 COVID-19 深度学习 深度学习算法 图像 14,435名参与者的胸部CT图像用于训练和验证,96名确诊COVID-19患者的非重叠数据集用于测试
5 2024-08-24
A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study
2020-12, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文开发了一种3D密集连接卷积神经网络(De-COVID19-Net),用于预测COVID-19患者的高风险或低风险组别,结合CT和临床信息 De-COVID19-Net模型在训练集和测试集上均表现出高准确性,AUC值分别为0.952和0.943 NA 开发一种预测工具,用于识别高风险COVID-19患者并辅助制定治疗计划 366名严重或危重的COVID-19患者 机器学习 COVID-19 3D密集连接卷积神经网络 CNN CT图像和临床信息 366名患者,包括70名高风险患者和296名低风险患者
6 2024-08-24
Hybrid-COVID: a novel hybrid 2D/3D CNN based on cross-domain adaptation approach for COVID-19 screening from chest X-ray images
2020-Dec, Physical and engineering sciences in medicine IF:2.4Q2
研究论文 本研究开发了一种基于迁移学习的混合2D/3D CNN架构,用于通过胸部X光图像进行COVID-19筛查 提出了一种结合预训练深度模型(VGG16)和浅层3D CNN的混合2D/3D CNN架构,通过深度可分离卷积层和空间金字塔池化模块(SPP)来减少计算负担并提取多层次特征 NA 开发一种高效的COVID-19筛查方法,以帮助早期识别COVID-19感染 COVID-19、肺炎和正常状态的胸部X光图像 计算机视觉 COVID-19 深度学习算法 混合2D/3D CNN 图像 收集的数据集包含3个类别:COVID-19、肺炎和正常状态
7 2024-08-24
A Systematic Review on the Use of AI and ML for Fighting the COVID-19 Pandemic
2020-Dec, IEEE transactions on artificial intelligence
综述 本文总结了基于AI和ML对抗COVID-19大流行的近期研究 本文识别了六个未来研究机会,并总结了七个未来研究方向 NA 总结AI和ML在对抗COVID-19中的应用,并识别未来研究方向 COVID-19大流行及其相关研究 机器学习 COVID-19 深度学习 CNN 图像 从634篇文章中筛选出49篇
8 2024-08-19
Development of pathological reconstructed high-resolution images using artificial intelligence based on whole slide image
2020-Dec, MedComm IF:10.7Q1
研究论文 本文提出了一种基于深度学习的高分辨率病理图像重建方法,能够将20倍全切片图像转换为40倍图像,同时保持整体和局部特征 开发了一种新的高分辨率图像重建流程,通过深度学习技术实现20倍全切片图像到40倍图像的无损转换 NA 提高数字病理学的普及性,通过减少存储空间和传输时间的需求 子宫平滑肌肉瘤和成人颗粒细胞瘤的全切片图像数据 数字病理学 肿瘤 深度学习 深度学习模型 图像 100例子宫平滑肌肉瘤和100例成人颗粒细胞瘤的全切片图像
9 2024-08-07
Artificial Intelligence, Radiomics, and Deep Learning in Neuro-Oncology
2020-Dec, Neuro-oncology advances IF:3.7Q2
NA NA NA NA NA NA NA NA NA NA NA NA
10 2024-08-06
piNET-An Automated Proliferation Index Calculator Framework for Ki67 Breast Cancer Images
2020-Dec-22, Cancers IF:4.5Q1
研究论文 本研究提出了一种用于Ki67乳腺癌图像的自动增殖指数计算器piNET 该工具基于深度学习,可以适应医疗图像的广泛变异性,且通过模拟病理学家的工作流程提高了准确性和效率 NA 开发一种高效准确的Ki67增殖指数量化工具 Ki67乳腺癌图像及其相关数据集 数字病理 乳腺癌 深度学习 NA 图像 四个数据集,来源于三个扫描仪,包括切片、组织微阵列和全切片图像
11 2024-08-06
Skin Lesion Classification Using Densely Connected Convolutional Networks with Attention Residual Learning
2020-Dec-10, Sensors (Basel, Switzerland)
研究论文 本文提出了一种利用注意力残差学习的密集连接卷积网络进行皮肤病变分类 引入了注意力机制和残差学习,同时减少了参数数量 没有对不同的成像方法和临床病理变化进行深入分析 改进皮肤病变的分类准确性 皮肤病变图像分类 计算机视觉 皮肤癌 卷积神经网络 ARDT-DenseNet 图像 ISIC 2016 和 ISIC 2017 数据集
12 2024-08-06
A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium
2020-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
研究论文 本文提出了一种基于深度学习的方法来定位深组织介质中的光声波前 构建了一个编码-解码卷积神经网络架构,专门用于识别光声波前在光散射深组织介质中的来源 模型是基于模拟的光声信号训练的,可能无法完全涵盖真实信号的复杂性 解决在光散射深组织中定位光声波前的挑战 使用光声成像技术来检测血管目标 数字病理学 NA 光声成像(PAI) 卷积神经网络(CNN) 模拟信号和实验信号 使用了16,240个血管目标的模拟信号,测试了4600个模拟信号和5个实验信号
13 2024-08-06
Quantifying behavior to understand the brain
2020-12, Nature neuroscience IF:21.2Q1
研究论文 本文回顾了自动化动物行为量化的技术进展 该研究介绍了计算伦理学的新领域,聚焦于深度学习在动物行为量化中的应用 研究中未详细讨论具体的实验条件和环境限制 旨在理解神经回路、认知过程与行为之间的关系 主要涉及动物行为和脑活动之间的联系 计算伦理学 NA 深度学习 NA 运动数据 NA
14 2024-08-07
Deep learning networks reflect cytoarchitectonic features used in brain mapping
2020-12-16, Scientific reports IF:3.8Q1
研究论文 研究深度卷积神经网络在皮质细胞构筑脑图中的应用,并分析其与传统细胞构筑特征的相似性 提出深度学习方法作为现有细胞构筑映射方法的替代方案,并验证其在高吞吐量细胞构筑映射工作流程中的有效性 缺乏对深度学习网络遵循细胞构筑原则程度的深入理解 探究深度卷积神经网络的内部结构如何反映传统的细胞构筑特征 深度卷积神经网络的过滤器激活与传统细胞构筑特征的相似性 计算机视觉 NA 深度学习 CNN 图像 涉及初级和次级视觉皮质的分割
15 2024-08-07
A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter
2020-12-14, BMC medical informatics and decision making IF:3.3Q2
研究论文 本文提出了一种使用深度学习方法在Twitter上识别患有创伤后应激障碍(PTSD)的癌症幸存者 利用卷积神经网络(CNN)自动识别Twitter上癌症幸存者发布的与PTSD相关的推文,提高了识别效率 Twitter上的推文可能包含噪音和真实信息,手动识别真实推文成本高且耗时 开发一种有效的方法来识别社交媒体上表达PTSD情绪的癌症幸存者 癌症幸存者及其在Twitter上表达的PTSD情绪 机器学习 NA 卷积神经网络(CNN) CNN 文本 使用癌症相关关键词过滤的推文
16 2024-08-07
Identification of Sleep Apnea Severity Based on Deep Learning from a Short-term Normal ECG
2020-Dec-07, Journal of Korean medical science IF:3.0Q1
研究论文 本文提出了一种基于深度学习从短期正常心电图信号自动识别睡眠呼吸暂停(SA)严重程度的新方法 利用卷积神经网络(CNN)从短期正常心电图信号中精确识别睡眠呼吸暂停的严重程度 NA 自动识别睡眠呼吸暂停的严重程度 睡眠呼吸暂停的严重程度 机器学习 睡眠呼吸暂停 卷积神经网络(CNN) CNN 心电图信号 共研究了144名受试者,训练集包含82,952个30秒的片段,测试集包含20,738个片段
17 2024-08-07
Deep convolutional neural networks: Outperforming established algorithms in the evaluation of industrial optical coherence tomography (OCT) images of pharmaceutical coatings
2020-Dec, International journal of pharmaceutics: X
研究论文 本文提出了一种基于深度卷积神经网络(CNN)的药物固体剂型光学相干断层扫描(OCT)图像分析新方法 该方法在性能基准上优于现有的静态算法,并代表了实时评估工业OCT图像数据的下一个级别 NA 验证深度卷积神经网络在药物涂层OCT图像评估中的有效性 药物涂层片剂和单层及多层颗粒的OCT图像 计算机视觉 NA 光学相干断层扫描(OCT) CNN 图像 涉及药物涂层片剂和单层及多层颗粒的图像数据
18 2024-08-07
Delimiting cryptic morphological variation among human malaria vector species using convolutional neural networks
2020-12, PLoS neglected tropical diseases IF:3.4Q1
研究论文 本文利用卷积神经网络(CNN)对来自五个地理区域的16个蚊子品系和物种的1,709张成年蚊子图像进行自动分类,以证明其可行性 本文首次应用CNN技术于蚊子图像分类,成功区分了形态上难以区分的隐秘物种 NA 探索使用深度学习方法区分图像类别,特别是在蚊子物种识别中的应用 蚊子物种及其品系的自动分类 计算机视觉 NA 卷积神经网络(CNN) CNN 图像 1,709张成年蚊子图像,来自16个蚊子品系和物种,源自五个地理区域
19 2024-08-07
Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms
2020-Dec-01, Biomedical optics express IF:2.9Q2
研究论文 本文提出了一套基于卷积神经网络(CNN)的深度学习方法,用于自动增强、分割和填补光学相干断层扫描血管造影(OCTA)图像中的空隙,特别是来自啮齿动物皮层的图像,并提供了一种骨架化分割OCTA和提取底层血管图的策略 本文的创新点在于开发了一套深度学习工具,能够自动处理OCTA图像中的增强、分割和空隙填补问题,并提取血管图,从而实现对血管结构属性的定量评估 NA 旨在解决从3D OCTA图像中客观量化血管结构属性的挑战 OCTA图像,特别是来自啮齿动物皮层的图像 计算机视觉 NA 光学相干断层扫描血管造影(OCTA) 卷积神经网络(CNN) 图像 NA
20 2024-08-07
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI
2020-Dec, European radiology IF:4.7Q1
研究论文 本文开发了一种自动方法,用于在低风险患者中识别和分割临床显著性前列腺癌,并评估其在常规临床环境中的表现。 使用3D卷积神经网络在多参数MRI上进行临床显著性前列腺癌的识别和分割。 模型在较小体积病变(>0.03 cc)上的性能不如较大体积病变(>0.5 cc)。 开发和评估一种自动方法,用于在低风险患者中识别和分割临床显著性前列腺癌。 低风险患者中的临床显著性前列腺癌。 计算机视觉 前列腺癌 多参数MRI CNN MRI图像 292名低风险患者
回到顶部