本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2024-10-07 |
Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods
2021-01-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-81352-y
PMID:33504830
|
研究论文 | 研究通过集成深度学习方法对高吞吐量组织微阵列中的结直肠组织图像进行分类 | 提出了使用软投票集成方法结合VGG和CapsNet模型,显著提高了分类准确率 | 未提及具体局限性 | 开发高准确率的算法用于结直肠组织分类,减少TMA核心评估中的错误 | 结直肠组织的H&E染色核心图像 | 计算机视觉 | 结直肠癌 | 深度学习 | 集成模型 | 图像 | 15,150个核心图像,包括2144个训练样本和13,006个测试样本 |
22 | 2024-10-07 |
Natural Language Processing-Based Virtual Cofacilitator for Online Cancer Support Groups: Protocol for an Algorithm Development and Validation Study
2021-Jan-07, JMIR research protocols
IF:1.4Q3
DOI:10.2196/21453
PMID:33410754
|
研究论文 | 本文介绍了一种基于自然语言处理技术的虚拟共同促进者,用于在线癌症支持小组,旨在实时分析文本消息以监测参与者的情感困扰 | 利用人工智能技术实时分析在线支持小组的文本数据,以识别和跟踪参与者的情感困扰,提供实时警报和个性化资源建议 | NA | 开发和评估一种基于人工智能的共同促进者原型,以实时监测在线支持小组参与者的情感困扰 | 在线癌症支持小组的参与者及其情感困扰 | 自然语言处理 | NA | 自然语言处理 | NA | 文本 | NA |
23 | 2024-10-07 |
Deep neural network models for computational histopathology: A survey
2021-01, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2020.101813
PMID:33049577
|
综述 | 本文综述了深度学习在计算病理学中的应用 | 总结了当前最先进的深度学习方法在病理图像分析中的进展 | 指出了当前深度学习方法的局限性和未来研究的方向 | 综述深度学习在病理图像分析中的应用 | 病理图像和疾病预后模型 | 数字病理学 | NA | 深度学习 | 深度神经网络 | 图像 | 超过130篇相关论文 |
24 | 2024-10-07 |
Deep Learning applications for COVID-19
2021, Journal of big data
IF:8.6Q1
DOI:10.1186/s40537-020-00392-9
PMID:33457181
|
综述 | 本文综述了深度学习在COVID-19大流行中的应用,并为未来的COVID-19研究提供了方向 | 本文涵盖了深度学习在自然语言处理、计算机视觉、生命科学和流行病学中的应用,并描述了这些应用如何随大数据的可用性变化以及学习任务的构建方式 | 本文指出了深度学习在COVID-19应用中的关键限制,包括可解释性、泛化指标、从有限标注数据中学习和数据隐私 | 探讨深度学习在COVID-19大流行中的应用,并为未来的研究提供方向 | COVID-19大流行中的深度学习应用 | 机器学习 | NA | 深度学习 | NA | 文本、图像 | NA |
25 | 2024-10-06 |
An Integrated Deep Network for Cancer Survival Prediction Using Omics Data
2021, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2021.568352
PMID:34337396
|
研究论文 | 本文使用集成深度信念网络对癌症患者的生存率进行预测,并进行风险分层 | 提出了一种集成深度信念网络,能够从不同组学数据中提取信息特征,并在中等规模的数据集上表现优异 | NA | 开发一种新的方法来预测癌症患者的生存率并进行风险分层 | 癌症患者的RNA、miRNA和甲基化分子数据 | 机器学习 | NA | 深度学习 | 深度信念网络 | 组学数据 | 836名患者 |
26 | 2024-10-06 |
Osteolysis: A Literature Review of Basic Science and Potential Computer-Based Image Processing Detection Methods
2021, Computational intelligence and neuroscience
DOI:10.1155/2021/4196241
PMID:34646317
|
综述 | 本文综述了骨溶解的基本科学原理及其潜在的基于计算机图像处理的检测方法 | 介绍了使用深度学习算法(如CNN、U-Net和Seg-UNet)进行医学图像处理,特别是在骨溶解检测和分割方面的应用 | NA | 探讨骨溶解的潜在计算机辅助检测方法 | 骨溶解的成因、机制和治疗方法,以及计算机图像处理技术在骨溶解检测中的应用 | 计算机视觉 | 骨科疾病 | 深度学习算法 | CNN, U-Net, Seg-UNet | 图像 | NA |
27 | 2024-10-06 |
Intelligent Solutions in Chest Abnormality Detection Based on YOLOv5 and ResNet50
2021, Journal of healthcare engineering
DOI:10.1155/2021/2267635
PMID:34691373
|
研究论文 | 本文提出了一种基于YOLOv5和ResNet50的胸部异常检测智能解决方案 | 本文创新性地结合了YOLOv5和ResNet50模型,以提高胸部异常检测的准确性和效率 | NA | 提高计算机辅助诊断系统在胸部异常检测中的准确性和效率 | 胸部异常检测和常见肺部疾病的分类 | 计算机视觉 | 肺部疾病 | 深度学习 | YOLOv5, ResNet50 | 图像 | 数据集来自VinBigData的VinLab平台 |
28 | 2024-10-06 |
The Longest Month: Analyzing COVID-19 Vaccination Opinions Dynamics From Tweets in the Month Following the First Vaccine Announcement
2021, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/ACCESS.2021.3059821
PMID:34786309
|
研究论文 | 分析在首个疫苗宣布后的一个月内,推特上关于COVID-19疫苗接种意见的动态变化 | 比较了经典机器学习与深度学习算法,选择表现最佳的分类器 | NA | 分析社交媒体上关于COVID-19疫苗接种的公众意见动态 | 推特上的COVID-19疫苗接种相关推文 | 自然语言处理 | NA | 机器学习 | NA | 文本 | 2,349,659条推文 |
29 | 2024-10-06 |
COVID-19 Multi-Targeted Drug Repurposing Using Few-Shot Learning
2021, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2021.693177
PMID:36303751
|
研究论文 | 本文介绍了一种新的深度学习模型,用于分子属性预测,并应用于COVID-19多靶点药物再利用 | 该模型采用图神经网络进行化学分子嵌入的计算学习,相比依赖大量标记实验数据的最先进方法,在预训练阶段无需手动标记,且在小样本数据上表现优异 | NA | 探索COVID-19多靶点药物再利用的新方法 | COVID-19治疗药物的多靶点分子筛选 | 机器学习 | COVID-19 | 图神经网络 | 深度学习模型 | 分子数据 | 小样本数据 |
30 | 2024-10-04 |
Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers
2021-01-30, Neuro-oncology
IF:16.4Q1
DOI:10.1093/neuonc/noaa163
PMID:32663285
|
研究论文 | 本文开发了一种基于深度学习的人工智能神经病理学家,用于通过苏木精-伊红染色切片图像和分子标记对胶质瘤进行分类 | 开发了一种新的挤压和激励块DenseNet模型,命名为SD-Net_WCE,用于胶质瘤分类任务 | NA | 确定深度学习是否可以应用于胶质瘤分类 | 胶质瘤的病理诊断和分类 | 数字病理学 | 脑肿瘤 | 深度学习 | 卷积神经网络 (CNN) | 图像 | 79,990个组织切片图像来自267名患者,56名患者的17,262个组织切片图像用于独立测试 |
31 | 2024-10-01 |
Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
2021, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2021.674154
PMID:34413731
|
研究论文 | 本文探讨了使用内存计算(IMC)加速卷积神经网络(CNN)推理的硬件设计方法 | 提出了针对IMC硬件的架构设计方法,并展示了如何实现流水线数据流以提高图像分类任务的吞吐量和延迟 | NA | 研究如何利用内存计算技术加速卷积神经网络的推理过程 | 卷积神经网络的推理硬件设计 | 计算机视觉 | NA | 内存计算(IMC) | 卷积神经网络(CNN) | 图像 | NA |
32 | 2024-10-01 |
The Teaching Design Methods Under Educational Psychology Based on Deep Learning and Artificial Intelligence
2021, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2021.711489
PMID:34671295
|
研究论文 | 本研究评估了基于教育心理学和人工智能设计的教学方法在实际应用中的价值,以深度学习理论为教学设计的基础 | 本研究创新性地结合了教育心理学和人工智能设计,提出了新的教学方法,并通过问卷调查和成绩变化分析验证了其有效性 | 由于各种客观和主观因素,研究结果可能与实际情况略有不同,其准确性有待未来进一步探索 | 评估基于教育心理学和人工智能设计的教学方法的实际应用价值 | 宁波中学的所有教师、学生及其家长 | NA | NA | NA | NA | 问卷调查数据 | 教师、学生和家长的有效问卷回收率分别为97%、99%和95%(实施前),98%、99%和99%(实施后) |
33 | 2024-09-30 |
Deep Learning Based Staging of Bone Lesions From Computed Tomography Scans
2021, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/access.2021.3074051
PMID:34733603
|
研究论文 | 本研究提出了一种基于深度学习的分类策略,用于通过计算机断层扫描(CT)图像对前列腺癌患者的骨转移病变进行分类 | 引入了包含2880个注释骨病变的数据集,并通过患者级别的分层提高了模型的可靠性,探索了病变纹理、形态、大小、位置和体积信息对分类性能的影响,并使用多种算法进行比较,最终通过2D ResNet-50和3D ResNet-18的集成模型达到了92.2%的分类准确率 | NA | 开发一种高效且准确的深度学习模型,用于通过CT扫描图像对前列腺癌患者的骨转移病变进行分类 | 前列腺癌患者的骨转移病变 | 计算机视觉 | 前列腺癌 | 深度学习 | ResNet | 图像 | 2880个注释骨病变,来自114名前列腺癌患者 |
34 | 2024-09-30 |
Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and Implementation on the Population of the Benelux Union
2021, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2021.727274
PMID:34778171
|
研究论文 | 本文提出了一种基于SEIRD模型和LSTM深度学习模型的两步法来预测COVID-19在比利时、荷兰和卢森堡(Benelux)地区的传播情况 | 结合了传统的SEIRD模型和LSTM深度学习模型来预测COVID-19的传播,并展示了两种模型在预测疫情高峰方面的有效性 | SEIRD模型在轻症病例的预测上存在较大误差,LSTM模型在比利时和荷兰的感染人数预测上也存在较高误差 | 开发和测试一种预测COVID-19感染的模型,并在Benelux地区实施,以帮助及时采取措施应对疫情 | COVID-19在Benelux地区的传播情况 | 机器学习 | COVID-19 | SEIRD模型,LSTM | LSTM | 统计数据 | 比利时、荷兰和卢森堡在2020年3月15日至2021年3月15日期间的官方统计数据 |
35 | 2024-09-30 |
COVIDSAVIOR: A Novel Sensor-Fusion and Deep Learning Based Framework for Virus Outbreaks
2021, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2021.797808
PMID:34917585
|
研究论文 | 本文介绍了一种基于深度学习和传感器融合的新型辅助技术,用于病毒爆发期间的自动口罩检测和体温扫描 | 提出了COVIDSAVIOR框架,结合深度学习和传感器融合技术,实现了智能口罩和体温扫描系统,能够自动检测口罩佩戴情况和体温异常 | NA | 开发一种能够自动检测口罩佩戴情况和体温异常的辅助技术,以减少病毒传播 | 智能口罩和体温扫描系统 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
36 | 2024-09-30 |
Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning
2021, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2021.792244
PMID:34956290
|
研究论文 | 研究提出了一种基于YOLOv3-tiny-IRB算法的深度学习方法,用于检测遮挡和重叠的番茄叶片疾病 | 提出了YOLOv3-tiny-IRB算法,优化特征提取网络,减少信息损失,实现多层特征复用和融合 | NA | 提高在真实自然环境中遮挡和重叠条件下番茄病虫害检测的准确性和速度 | 番茄叶片疾病和虫害 | 计算机视觉 | NA | 深度学习 | YOLOv3-tiny-IRB | 图像 | 自建的番茄病虫害数据集 |
37 | 2024-09-30 |
Spontaneous Facial Expressions and Micro-expressions Coding: From Brain to Face
2021, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2021.784834
PMID:35058850
|
研究论文 | 本文旨在通过解构面部肌肉运动,从运动皮层出发,系统梳理面部肌肉、动作单元(AU)和情绪之间的关系,使更多人理解编码的基本原理 | 本文通过数据驱动的分析和专业编码员的经验,推导出AU与情绪之间的关系,并详细讨论了生成面部运动特性的复杂面部运动皮层网络系统 | NA | 减轻基于视频的表情或微表情研究中专业知识的需求 | 面部表情和微表情的编码 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 5000张图像 |
38 | 2024-09-30 |
Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology
2021, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2021.816281
PMID:35155486
|
研究论文 | 本文介绍了一种无需编写代码的深度学习分割模型开发和部署管道,用于数字病理学中的组织病理学全切片图像(WSIs)分割 | 提出了一个无需编写代码的管道,利用开源软件(QuPath、DeepMIB和FastPathology)创建和部署深度学习分割模型,使没有编程经验的病理学家也能创建接近最先进的分割解决方案 | NA | 提高病理学诊断的效率和可重复性 | 结肠黏膜中的上皮和基质分离 | 数字病理学 | NA | 深度学习 | 分割模型 | 图像 | 251张标注的全切片图像,包括140张苏木精-伊红(HE)染色和111张CD3免疫染色的结肠活检图像 |
39 | 2024-09-30 |
SpatialSim: Recognizing Spatial Configurations of Objects With Graph Neural Networks
2021, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2021.782081
PMID:35156011
|
研究论文 | 本文提出了一种名为SpatialSim的新型几何推理诊断数据集,并验证了全连接消息传递图神经网络(MPGNNs)在解决识别和区分物体空间配置任务中的优势 | 提出了SpatialSim数据集,并展示了MPGNNs在几何推理任务中的优越性 | 指出了当前GNNs在识别和区分任务中的局限性 | 研究自主代理如何通过几何推理能力判断目标是否达成 | 物体空间配置的识别和区分 | 计算机视觉 | NA | 图神经网络(GNNs) | 图神经网络(MPGNNs) | 图像 | NA |
40 | 2024-09-30 |
Emotion Recognition Based on Dynamic Energy Features Using a Bi-LSTM Network
2021, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2021.741086
PMID:35264939
|
研究论文 | 本文提出了一种基于动态能量特征的深度网络模型,用于解决脑电图(EEG)信号情感识别中因分辨率低和小样本量导致的高质量模型难以应用的问题 | 本文提出了能量序列的概念以减少特征分析和提取过程中的噪声叠加,并给出了动态能量特征集的构建方法,同时使用了双向长短期记忆(Bi-LSTM)网络以适应小数据集 | NA | 解决脑电图信号情感识别中因分辨率低和小样本量导致的高质量模型难以应用的问题 | 脑电图(EEG)信号的情感识别 | 机器学习 | NA | 双向长短期记忆(Bi-LSTM)网络 | Bi-LSTM | 脑电图(EEG)信号 | 使用了SEED和DEAP数据集,采用留一法(LOSO)和10折交叉验证(CV)策略进行实验 |