本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181 | 2024-09-30 |
COVIDSAVIOR: A Novel Sensor-Fusion and Deep Learning Based Framework for Virus Outbreaks
2021, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2021.797808
PMID:34917585
|
研究论文 | 本文介绍了一种基于深度学习和传感器融合的新型辅助技术,用于病毒爆发期间的自动口罩检测和体温扫描 | 提出了COVIDSAVIOR框架,结合深度学习和传感器融合技术,实现了智能口罩和体温扫描系统,能够自动检测口罩佩戴情况和体温异常 | NA | 开发一种能够自动检测口罩佩戴情况和体温异常的辅助技术,以减少病毒传播 | 智能口罩和体温扫描系统 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
182 | 2024-09-30 |
Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning
2021, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2021.792244
PMID:34956290
|
研究论文 | 研究提出了一种基于YOLOv3-tiny-IRB算法的深度学习方法,用于检测遮挡和重叠的番茄叶片疾病 | 提出了YOLOv3-tiny-IRB算法,优化特征提取网络,减少信息损失,实现多层特征复用和融合 | NA | 提高在真实自然环境中遮挡和重叠条件下番茄病虫害检测的准确性和速度 | 番茄叶片疾病和虫害 | 计算机视觉 | NA | 深度学习 | YOLOv3-tiny-IRB | 图像 | 自建的番茄病虫害数据集 |
183 | 2024-09-30 |
Spontaneous Facial Expressions and Micro-expressions Coding: From Brain to Face
2021, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2021.784834
PMID:35058850
|
研究论文 | 本文旨在通过解构面部肌肉运动,从运动皮层出发,系统梳理面部肌肉、动作单元(AU)和情绪之间的关系,使更多人理解编码的基本原理 | 本文通过数据驱动的分析和专业编码员的经验,推导出AU与情绪之间的关系,并详细讨论了生成面部运动特性的复杂面部运动皮层网络系统 | NA | 减轻基于视频的表情或微表情研究中专业知识的需求 | 面部表情和微表情的编码 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 5000张图像 |
184 | 2024-09-30 |
Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology
2021, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2021.816281
PMID:35155486
|
研究论文 | 本文介绍了一种无需编写代码的深度学习分割模型开发和部署管道,用于数字病理学中的组织病理学全切片图像(WSIs)分割 | 提出了一个无需编写代码的管道,利用开源软件(QuPath、DeepMIB和FastPathology)创建和部署深度学习分割模型,使没有编程经验的病理学家也能创建接近最先进的分割解决方案 | NA | 提高病理学诊断的效率和可重复性 | 结肠黏膜中的上皮和基质分离 | 数字病理学 | NA | 深度学习 | 分割模型 | 图像 | 251张标注的全切片图像,包括140张苏木精-伊红(HE)染色和111张CD3免疫染色的结肠活检图像 |
185 | 2024-09-30 |
SpatialSim: Recognizing Spatial Configurations of Objects With Graph Neural Networks
2021, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2021.782081
PMID:35156011
|
研究论文 | 本文提出了一种名为SpatialSim的新型几何推理诊断数据集,并验证了全连接消息传递图神经网络(MPGNNs)在解决识别和区分物体空间配置任务中的优势 | 提出了SpatialSim数据集,并展示了MPGNNs在几何推理任务中的优越性 | 指出了当前GNNs在识别和区分任务中的局限性 | 研究自主代理如何通过几何推理能力判断目标是否达成 | 物体空间配置的识别和区分 | 计算机视觉 | NA | 图神经网络(GNNs) | 图神经网络(MPGNNs) | 图像 | NA |
186 | 2024-09-30 |
Emotion Recognition Based on Dynamic Energy Features Using a Bi-LSTM Network
2021, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2021.741086
PMID:35264939
|
研究论文 | 本文提出了一种基于动态能量特征的深度网络模型,用于解决脑电图(EEG)信号情感识别中因分辨率低和小样本量导致的高质量模型难以应用的问题 | 本文提出了能量序列的概念以减少特征分析和提取过程中的噪声叠加,并给出了动态能量特征集的构建方法,同时使用了双向长短期记忆(Bi-LSTM)网络以适应小数据集 | NA | 解决脑电图信号情感识别中因分辨率低和小样本量导致的高质量模型难以应用的问题 | 脑电图(EEG)信号的情感识别 | 机器学习 | NA | 双向长短期记忆(Bi-LSTM)网络 | Bi-LSTM | 脑电图(EEG)信号 | 使用了SEED和DEAP数据集,采用留一法(LOSO)和10折交叉验证(CV)策略进行实验 |
187 | 2024-09-29 |
CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning
2021-Dec-30, Expert systems with applications
IF:7.5Q1
DOI:10.1016/j.eswa.2021.115805
PMID:34511738
|
研究论文 | 提出了一种基于Harris Hawks优化和堆叠深度学习的COVID-19检测方法CovH2SD | 采用Harris Hawks优化算法优化超参数,并结合九种预训练卷积神经网络进行特征提取和学习 | 未提及 | 开发一种快速且准确的COVID-19检测方法 | COVID-19患者的胸部CT图像 | 计算机视觉 | COVID-19 | Harris Hawks优化算法 | 卷积神经网络 | 图像 | 未提及 |
188 | 2024-09-29 |
Machine Learning in Epigenomics: Insights into Cancer Biology and Medicine
2021-12, Biochimica et biophysica acta. Reviews on cancer
DOI:10.1016/j.bbcan.2021.188588
PMID:34245839
|
综述 | 本文综述了机器学习在表观基因组学中的应用,特别是其在癌症生物学和医学中的作用 | 探讨了机器学习算法在处理复杂、高维、稀疏和噪声数据方面的优势 | 未具体讨论每种机器学习方法的局限性 | 旨在概述机器学习方法如何用于探索表观基因组在癌症生物学和医学中的作用 | 癌症样本中的表观基因组数据 | 机器学习 | 癌症 | 机器学习算法 | NA | 表观基因组数据 | NA |
189 | 2024-09-29 |
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
2021-11-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-02111-7
PMID:34811411
|
研究论文 | 研究利用心脏磁共振成像(CMR)和深度学习模型预测心室心律失常(VA)的风险 | 开发了一种新的深度学习模型,通过心脏磁共振成像提取心脏结构和功能特征,以预测心室心律失常的风险 | 需要多中心参与进行外部验证 | 开发更好的模型来识别低风险心室心律失常的患者,以减少植入式心脏复律除颤器(ICD)相关并发症的风险 | 心室心律失常的风险预测 | 机器学习 | 心血管疾病 | 心脏磁共振成像(CMR) | 神经网络 | 图像 | 350名主要预防性ICD接受者,其中97名女性,中位年龄59岁,178名患有缺血性心肌病 |
190 | 2024-09-29 |
Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
2021-Nov-18, Brain sciences
IF:2.7Q3
DOI:10.3390/brainsci11111525
PMID:34827524
|
综述 | 本文系统综述了机器学习和深度学习在脑电信号解码和分类中的应用 | 本文总结了最新的机器学习和深度学习模型在脑电信号处理中的应用,并提供了特征提取和分类器的推荐 | 本文主要基于文献综述,未进行新的实验或数据分析 | 系统综述机器学习和深度学习在脑电信号解码和分类中的最新进展 | 脑电信号的解码和分类 | 机器学习 | NA | 脑电图 (EEG) | 卷积神经网络 (CNN), 支持向量机 (SVM) | 脑电信号 | NA |
191 | 2024-09-29 |
Wound Size Imaging: Ready for Smart Assessment and Monitoring
2021-11, Advances in wound care
IF:5.8Q1
DOI:10.1089/wound.2018.0937
PMID:32320356
|
研究论文 | 本文介绍并评估了用于伤口尺寸成像的新兴设备和模式,以及用于智能伤口评估和监测的有前景的图像处理工具 | 本文引入了低成本设备和机器学习技术,使伤口评估更加稳健和准确,并结合多种成像模式和机器学习,实现了智能伤口监测 | NA | 研究目的是评估新兴设备和图像处理工具在智能伤口评估和监测中的应用 | 研究对象是伤口尺寸成像设备和图像处理工具 | 计算机视觉 | NA | 机器学习 | NA | 图像 | NA |
192 | 2024-09-29 |
Importance of the 5' regulatory region to bacterial synthetic biology applications
2021-11, Microbial biotechnology
IF:4.8Q1
DOI:10.1111/1751-7915.13868
PMID:34171170
|
综述 | 本文综述了细菌合成生物学中5'调控区域(包括启动子、非翻译区域和编码序列的5'端)的创建方法及其在基因表达调控和化合物合成中的重要性 | 本文总结了细菌合成生物学中5'调控区域创建方法的最新进展,并讨论了其在细菌工程中的重要性 | 本文主要讨论了现有方法的优缺点,但未提出新的解决方案或技术 | 探讨细菌合成生物学中5'调控区域的创建方法及其在基因表达调控和化合物合成中的应用 | 细菌合成生物学中的5'调控区域(启动子、非翻译区域和编码序列的5'端) | 合成生物学 | NA | NA | NA | NA | NA |
193 | 2024-09-29 |
Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study
2021-Aug-11, Sensors (Basel, Switzerland)
DOI:10.3390/s21165425
PMID:34450866
|
研究论文 | 本文研究了使用不同集成技术结合三种深度学习模型(两个CNN模型和一个CNN与LSTM结合模型)进行阻塞性睡眠呼吸暂停(OSA)检测的实验 | 本文采用了四种集成技术(多数投票、求和规则、Choquet积分模糊融合和基于MLP的可训练集成),并在PhysioNet Apnea-ECG数据库上进行了实验,最终实现了85.58%的OSA检测准确率,超越了许多现有方法 | NA | 研究阻塞性睡眠呼吸暂停(OSA)的检测方法 | 从体传感器获得的ECG信号 | 机器学习 | NA | ECG信号分析 | CNN、LSTM、MLP | ECG信号 | 使用PhysioNet Apnea-ECG数据库 |
194 | 2024-09-29 |
Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach
2021-Jul-21, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/27955
PMID:34287213
|
研究论文 | 本文开发了一种信息提取系统,用于从CT报告中自动提取肺癌分期相关信息 | 提出了一种新的关系分类方法,使用关系符号约束(RSC),并在实验中展示了其优越性 | NA | 自动提取CT报告中肺癌分期相关信息,以支持准确的临床分期 | 肺癌分期信息 | 计算机视觉 | 肺癌 | 深度学习 | BERT | 文本 | 392份胸部CT报告 |
195 | 2024-09-29 |
Toward Patient-Specific Prediction of Ablation Strategies for Atrial Fibrillation Using Deep Learning
2021, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2021.674106
PMID:34122144
|
研究论文 | 本文提出了一种结合图像计算模型和深度学习分类器的方法,用于预测房颤患者的导管消融策略 | 本文的创新点在于结合了患者特异性房颤模型和深度学习技术,以提高导管消融治疗的成功率 | 本文的局限性在于验证准确率相对较低,且在预测肺静脉隔离策略时成功率不高 | 研究目的是开发一种基于深度学习的技术,用于个性化预测房颤患者的导管消融策略 | 研究对象是房颤患者的特异性房颤模型和导管消融策略 | 机器学习 | 心血管疾病 | 深度学习 | CNN | 图像 | 122个患者LGE-MRI数据图像,157个合成图像,558个导管消融模拟结果 |
196 | 2024-09-29 |
The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review
2021, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2021.710329
PMID:34527682
|
综述 | 本文综述了人工智能和深度学习在眼科疾病中的应用及其基本原理 | NA | 本文讨论了将人工智能技术应用于眼科领域时出现的一些潜在挑战和局限性 | 探讨人工智能和深度学习在眼科疾病中的应用 | 常见眼科疾病 | 计算机视觉 | NA | 人工智能 | 深度学习 | NA | NA |
197 | 2024-09-29 |
A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites
2021, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2021.752732
PMID:34764983
|
研究论文 | 提出了一种基于深度学习和XGBoost的蛋白质-蛋白质相互作用位点预测方法 | 结合深度学习和XGBoost算法,提出了一种新的蛋白质-蛋白质相互作用位点预测方法DeepPPISP-XGB | NA | 预测蛋白质-蛋白质相互作用位点 | 蛋白质序列及其相互作用位点 | 机器学习 | NA | 深度学习, XGBoost | 深度学习模型, XGBoost | 蛋白质序列 | NA |
198 | 2024-09-29 |
Biologically Inspired Deep Learning Model for Efficient Foveal-Peripheral Vision
2021, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2021.746204
PMID:34880741
|
研究论文 | 本文提出了一种受灵长类和人类视网膜皮层映射启发的端到端神经模型,用于高效的中央凹-周边视觉 | 该模型采用了一种高效的采样技术来压缩视觉信号,使得场景的一小部分以高分辨率感知,而大部分视野以低分辨率维持,同时引入了一种注意力机制来模拟“眼球运动”,帮助代理从观察场景中逐步收集详细信息 | NA | 开发一种高效的计算模型来模拟生物学中的中央凹-周边视觉 | 中央凹-周边视觉的神经网络模型 | 计算机视觉 | NA | NA | 神经网络 | 图像和视频 | NA |
199 | 2024-09-28 |
COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 prediction
2021-07-12, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-93545-6
PMID:34253768
|
研究论文 | 本文提出了一种名为COURAGE的方法,利用深度学习技术预测美国各县未来两周的COVID-19相关死亡人数 | 采用自注意力模型(transformer模型)捕捉时间序列中的短期和长期依赖关系,并实现了计算效率的提升 | NA | 预测COVID-19在美国的局部严重程度,以优化资源分配 | 美国各县的COVID-19相关死亡人数 | 机器学习 | COVID-19 | 深度学习 | transformer模型 | 时间序列数据 | 美国各县的COVID-19相关确诊病例、死亡人数、社区流动趋势和人口统计信息 |
200 | 2024-09-28 |
Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology
2021-04, Biochimica et biophysica acta. Reviews on cancer
DOI:10.1016/j.bbcan.2021.188520
PMID:33561505
|
综述 | 本文探讨了人工智能在免疫肿瘤学中的应用及其对数字病理学的影响 | 利用深度学习进行病理样本的大数据分析,超越传统技术的可能性 | NA | 探讨人工智能在免疫肿瘤学中的应用,解决肿瘤免疫相互作用和免疫治疗患者选择的问题 | 肿瘤免疫微环境的可测量特征及其在预测和预后中的价值 | 数字病理学 | 肿瘤 | 深度学习 | NA | 病理样本数据 | NA |