深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202101-202112] [清除筛选条件]
当前共找到 635 篇文献,本页显示第 221 - 240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
221 2024-09-23
Hyperspectral Microscopic Imaging for the Detection of Head and Neck Squamous Cell Carcinoma on Histologic Slides
2021-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 研究使用高光谱显微成像和深度学习方法自动检测头颈部鳞状细胞癌 首次将高光谱显微成像与基于Inception的二维卷积神经网络结合用于头颈部鳞状细胞癌的自动检测 样本量较小,仅涉及18名患者 探索高光谱显微成像和深度学习方法在头颈部鳞状细胞癌自动检测中的应用 头颈部鳞状细胞癌的病理切片 数字病理学 头颈部鳞状细胞癌 高光谱成像 二维卷积神经网络 图像 18名患者
222 2024-09-23
Lung parenchymal characterization via thoracic dynamic MRI in normal children and pediatric patients with TIS
2021, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文展示了通过胸腔动态MRI评估正常儿童和TIS患儿肺实质特征的方法 首次提供了一种定量的动态功能方法,用于在动态MRI上分析健康儿童和TIS患儿的潮气呼吸期间肺实质 NA 评估胸腔不足综合征(TIS)患儿的治疗效果 正常儿童和TIS患儿的肺实质特征 数字病理 胸腔不足综合征 动态磁共振成像(dMRI) 深度学习 图像 11名TIS患儿(每名患儿有术前和术后扫描)和23名健康儿童的45次dMRI扫描
223 2024-09-21
Advancing Eosinophilic Esophagitis Diagnosis and Phenotype Assessment with Deep Learning Computer Vision
2021-Feb, Biomedical engineering systems and technologies, international joint conference, BIOSTEC ... revised selected papers. BIOSTEC (Conference)
研究论文 本文提出了一种利用深度学习计算机视觉技术自动量化嗜酸性粒细胞以诊断嗜酸性食管炎(EoE)并评估疾病严重程度和进展的方法 首次利用深度学习计算机视觉技术进行EoE诊断,并提供了一种自动化的疾病严重程度和进展跟踪过程 NA 寻找可能指导新患者在疾病初始诊断时治疗计划的关联 嗜酸性食管炎(EoE)的诊断和疾病严重程度及进展评估 计算机视觉 消化系统疾病 深度学习 U-Net 图像 NA
224 2024-09-20
Evaluation of Ischemic Penumbra in Stroke Patients Based on Deep Learning and Multimodal CT
2021, Journal of healthcare engineering
研究论文 本文提出了一种基于改进的全局注意力上采样U-Net模型的主次路径注意力补偿网络结构,用于急性缺血性卒中患者的缺血半暗带和核心梗死体积的分割 提出了主次路径注意力补偿网络结构,通过辅助路径网络生成松散的辅助注意力补偿系数,弥补主路径网络中可能的注意力系数错误 文章未明确提及具体的局限性 研究多模态CT在急性缺血性卒中患者中对侧支循环、缺血半暗带、核心梗死体积的定量评估及其在静脉溶栓治疗中的预后评估价值 急性缺血性卒中患者的缺血半暗带、核心梗死体积及静脉溶栓治疗的预后 计算机视觉 脑血管疾病 深度学习 U-Net 图像 未明确提及具体样本数量
225 2024-09-20
Enhanced bat algorithm for COVID-19 short-term forecasting using optimized LSTM
2021, Soft computing IF:3.1Q2
研究论文 本文提出了一种优化的长短期记忆网络(LSTM)用于COVID-19病例的短期预测,并使用增强的蝙蝠算法(BA)进行优化 本文提出了一种增强的蝙蝠算法,通过使用高斯自适应惯性权重和替换随机漫步为高斯漫步来解决过早收敛和局部最小值问题 NA 提高COVID-19病例预测的准确性,帮助控制疫情 COVID-19病例的短期预测 机器学习 COVID-19 蝙蝠算法 LSTM 时间序列数据 NA
226 2024-09-19
Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network
2021-Dec, Health information science and systems IF:4.7Q1
研究论文 本文提出了一种基于超分辨率重建图像和VGG神经网络的COVID-19肺炎胸部CT图像分类辅助诊断算法 使用SRGAN神经网络对胸部CT图像进行超分辨率重建,然后通过VGG16神经网络对COVID-19和非COVID-19图像进行分类 NA 提高COVID-19肺炎胸部CT图像分类的准确性和性能 COVID-19肺炎和非COVID-19肺炎的胸部CT图像 计算机视觉 肺部疾病 超分辨率重建 SRGAN和VGG16 图像 使用公开的COVID-CT数据集进行验证
227 2024-09-19
Blockchain-Federated-Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging
2021-Jul-15, IEEE sensors journal IF:4.3Q2
研究论文 本文提出了一种利用区块链联邦学习和深度学习模型进行COVID-19检测的框架 提出了基于区块链的联邦学习框架,解决了数据异质性和隐私保护问题,并使用了胶囊网络进行分割和分类 NA 开发一种有效的COVID-19诊断方法,解决测试试剂短缺和数据共享隐私问题 COVID-19患者的CT影像数据 计算机视觉 COVID-19 区块链技术,联邦学习 胶囊网络 CT影像 来自不同医院的少量COVID-19患者数据
228 2024-09-19
Deep Learning-Based COVID-19 Detection Using CT and X-Ray Images: Current Analytics and Comparisons
2021-May-01, IT professional IF:2.2Q3
研究论文 本文利用深度学习方法基于CT和X光图像进行COVID-19检测,并分析其全球传播情况 本文提出了基于深度学习的COVID-19检测方法,并结合数据分析全球传播情况 NA 研究COVID-19的检测方法及其全球传播情况 COVID-19病毒及其传播 计算机视觉 COVID-19 深度学习 NA 图像 NA
229 2024-09-19
A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images
2021-Apr-29, Healthcare (Basel, Switzerland)
研究论文 提出了一种利用人工智能和胸部X光图像自动诊断COVID-19的新方法 提出了CoVIRNet模型,结合了深度学习和机器学习技术,通过多尺度特征提取和分类,实现了95.7%的准确率,特征提取器与随机森林分类器结合达到了97.29%的准确率 由于COVID-19数据集较小,存在过拟合的风险 开发一种非侵入性技术,利用人工智能自动检测疑似COVID-19患者 COVID-19患者的胸部X光图像 计算机视觉 传染病 深度学习 Inception-ResNet 图像 有限数量的COVID-19患者胸部X光图像
230 2024-09-19
Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets
2021-Apr-22, Knowledge-based systems IF:7.2Q1
研究论文 本文利用迁移学习技术,基于小规模训练数据集,建立了用于CT影像识别COVID-19的方法 本文首次采用迁移学习结合DensNet-121模型,利用CheXNet预训练网络在小规模数据集上进行微调,实现了COVID-19的高精度识别 本文方法依赖于预训练网络的性能,且仅在COVID-19-CT数据集上进行了验证 开发一种基于CT影像的高效COVID-19识别方法,以减轻临床和放射科医生的负担 COVID-19的CT影像识别 计算机视觉 COVID-19 迁移学习 DensNet-121 CT影像 小规模数据集
231 2024-09-19
Deep Learning-Driven Automated Detection of COVID-19 from Radiography Images: a Comparative Analysis
2021-Mar-02, Cognitive computation IF:4.3Q1
研究论文 本文详细研究了基于深度学习的COVID-19自动检测方法,并进行了模型性能的基准测试 首次对315种深度学习模型在COVID-19检测中的性能进行了基准测试,并发现DenseNet201模型结合Quadratic SVM分类器表现最佳 研究主要集中在X射线图像上,未涵盖其他类型的医学影像数据 评估和比较不同深度学习模型在COVID-19检测中的性能 COVID-19、正常和肺炎的X射线图像 计算机视觉 COVID-19 深度学习 DenseNet201 图像 来自四个数据集的X射线图像,共315个模型
232 2024-09-19
Machine and Deep Learning towards COVID-19 Diagnosis and Treatment: Survey, Challenges, and Future Directions
2021-01-27, International journal of environmental research and public health
综述 本文综述了基于人工智能的机器学习和深度学习方法在COVID-19诊断和治疗中的应用 总结了现有的最先进方法及其在COVID-19中的应用,并提供了未来研究方向 NA 探讨人工智能技术在COVID-19诊断和治疗中的应用及其未来发展方向 COVID-19的诊断和治疗 机器学习 COVID-19 机器学习 (ML) 和深度学习 (DL) NA NA NA
233 2024-09-17
Using Deep Learning to Identify High-Risk Patients with Heart Failure with Reduced Ejection Fraction
2021, Journal of health economics and outcomes research IF:2.3Q2
研究论文 本研究利用深度学习模型预测心力衰竭伴射血分数降低患者的心力衰竭住院、恶化事件及30天和90天再入院 本研究首次采用双向长短期记忆网络(Bi-LSTM)模型,并展示了其在预测心力衰竭相关结果方面的优越性 缺乏详细的临床数据以及样本量和样本不平衡问题可能限制了模型的性能 开发和部署预测工具以识别高风险的心力衰竭伴射血分数降低患者 心力衰竭伴射血分数降低患者的住院、恶化事件及再入院 机器学习 心血管疾病 深度学习 双向长短期记忆网络(Bi-LSTM) 电子健康记录 共纳入47,498名心力衰竭伴射血分数降低患者,其中9,427名至少有一次心力衰竭住院
234 2024-09-15
Ten future challenges for synthetic biology
2021-Sep, Engineering biology
评论 本文讨论了合成生物学领域的10个未来挑战 NA NA 探讨合成生物学未来的技术进步和发展方向 合成生物学领域的技术挑战 合成生物学 NA 自动化、深度学习、进化控制 NA NA NA
235 2024-09-14
Automatic delineation of cardiac substructures using a region-based fully convolutional network
2021-Jun, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于区域的全卷积网络用于自动描绘心脏亚结构 使用了一种基于深度学习的算法,通过区域卷积神经网络(RCNN)自动生成心脏亚结构的轮廓,以帮助回顾性或前瞻性剂量学研究 该方法在冠状动脉和心脏瓣膜的分割上表现较差,平均表面距离(MSD)较大 研究放射剂量与心脏亚结构毒性之间的关系 心脏亚结构,如心房和心室 计算机视觉 NA 区域卷积神经网络(RCNN) 全卷积网络 CT图像 55个患者CT数据集,其中22个有对比扫描,45个用于三折交叉验证,10个用于保留评估
236 2024-09-14
Evaluation of deep learning approaches for identification of different corona-virus species and time series prediction
2021-06, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文评估了多种深度学习模型在新冠病毒物种识别和时间序列预测中的应用 本文首次将多种卷积神经网络模型(如VGG、LetNet-5、AlexNet和Resnet-50)应用于新冠病毒和SARS_MERS感染患者的肺部X光扫描分类,并使用LSTM模型进行新冠病毒病例的时间序列预测 由于不同冠状病毒类型的特征重叠,肺部X光扫描的分类任务具有挑战性 开发一种自动化系统,用于区分新冠病毒阳性患者和阴性患者,并预测未来10天内的新冠病毒病例 新冠病毒和SARS_MERS感染患者的肺部X光扫描图像,以及意大利未来10天内的新冠病毒病例 计算机视觉 NA 卷积神经网络(CNN)和长短期记忆网络(LSTM) CNN和LSTM 图像 NA
237 2024-09-14
Echocardiographic image multi-structure segmentation using Cardiac-SegNet
2021-May, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于深度学习的超声心动图多结构分割方法,使用Cardiac-SegNet网络进行自动分割 本文提出了一种无锚点的掩码卷积神经网络Cardiac-SegNet,相比传统的Mask R-CNN方法,该网络能够更好地建模目标的空间关系,并采用空间注意力策略突出显著特征 NA 开发一种基于深度学习的自动多结构分割方法,用于超声心动图的心脏边界分割,以评估心脏功能和疾病诊断 超声心动图中的左心室心内膜、左心室心外膜和左心房 计算机视觉 心血管疾病 卷积神经网络 CNN 图像 450个患者数据集,采用五折交叉验证和保留测试
238 2024-09-14
Synthetic dual-energy CT for MRI-only based proton therapy treatment planning using label-GAN
2021-03-09, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种基于深度学习的方法,利用label-GAN从MRI生成合成双能CT(sDECT),以计算质子治疗中的停止功率比(SPR) 本文提出了一种新的基于标签生成对抗网络(label-GAN)的模型,能够区分高能CT(HECT)和低能CT(LECT),并显著提高了sDECT的准确性 本文仅在57例头颈部癌症患者的数据集上验证了方法的有效性,未来需要在更大和更多样化的数据集上进行验证 开发一种从MRI生成合成双能CT的方法,以支持无CT的质子治疗计划 头颈部癌症患者的MRI和双能CT图像 计算机视觉 头颈部癌症 深度学习 生成对抗网络(GAN) 图像 57例头颈部癌症患者
239 2024-09-14
Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN
2021-Jan, Medical physics IF:3.2Q1
研究论文 本文开发了一种基于深度学习的方法,使用Mask scoring R-CNN进行3D自动乳腺超声中的乳腺肿瘤自动分割 本文提出了一种新颖的Mask scoring R-CNN方法,用于自动分割3D自动乳腺超声图像中的乳腺肿瘤 NA 开发一种基于深度学习的方法,用于3D自动乳腺超声中的乳腺肿瘤自动分割 3D自动乳腺超声图像中的乳腺肿瘤 计算机视觉 乳腺癌 Mask scoring R-CNN R-CNN 图像 70名经针刺活检确诊的乳腺癌患者,其中40名用于五折交叉验证,30名用于保留测试
240 2024-09-13
[Review on identity feature extraction methods based on electroencephalogram signals]
2021-Dec-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
综述 本文综述了基于脑电信号的身份特征提取方法 介绍了脑电信号在生物识别中的特殊优势,并探讨了如何结合脑电数据特征更好地提取差异信息 未提及具体的研究局限性 探讨基于脑电信号的身份识别方法 脑电信号的身份特征提取 生物识别 NA 脑电信号分析 深度学习 脑电信号 NA
回到顶部