深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202101-202112] [清除筛选条件]
当前共找到 646 篇文献,本页显示第 361 - 380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
361 2024-08-28
A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data
2021-Jan, Nature machine intelligence IF:18.8Q1
研究论文 本文介绍了一种基于真实世界患者数据模拟临床试验的深度学习框架,用于药物再利用的候选药物生成和测试 该框架结合了因果推断和深度学习方法,模拟随机临床试验,用于大规模医疗索赔数据库中的药物再利用 NA 开发一种高效的、易于定制的框架,用于药物再利用的候选药物生成和测试 冠状动脉疾病患者群体 机器学习 心血管疾病 深度学习 NA 电子健康记录和保险索赔数据 数百万冠状动脉疾病患者 NA NA NA NA
362 2024-08-27
A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy
2021-11-22, Cell reports methods IF:4.3Q2
研究论文 本文介绍了一种基于深度学习的分割流程MARS-Net,用于使用多种活细胞显微镜技术对细胞形态动力学进行定量分析 MARS-Net利用迁移学习和多种显微镜数据,实现了对细胞边缘的高精度定位,相较于仅使用单一显微镜数据集训练的神经网络模型,其边缘定位更为准确 NA 开发一种能够从活细胞成像数据中准确分割细胞边缘并量化细胞形态动力学的方法 细胞边缘的定位和细胞形态动力学的定量分析 计算机视觉 NA 深度学习 U-Net 图像 使用了来自相衬、旋转盘共聚焦和全内反射荧光显微镜的电影数据进行训练 NA NA NA NA
363 2024-08-27
A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics
2021-10-25, Cell reports methods IF:4.3Q2
研究论文 本文介绍了一种弱监督深度学习方法iCellCnn,用于无需标签的基于成像流式细胞术的血液诊断 iCellCnn能够基于明场成像流式细胞术图像实现Sézary综合征的诊断,且不限于特定疾病的诊断 研究样本量较小,仅包括四名健康捐赠者和五名Sézary综合征患者 开发一种无需手动标记单细胞图像的弱监督深度学习方法,以促进成像流式细胞术在血液疾病诊断中的应用 Sézary综合征的诊断 机器学习 血液疾病 成像流式细胞术 CNN 图像 四名健康捐赠者和五名Sézary综合征患者 NA NA NA NA
364 2024-08-27
End-to-end robust joint unsupervised image alignment and clustering
2021-Oct, Proceedings. IEEE International Conference on Computer Vision
研究论文 提出了一种名为Jim-Net的多任务模型,能够无监督地同时进行图像对齐和聚类 Jim-Net是首个能够同时进行图像对齐和聚类的端到端模型,显著提高了单独执行每个任务的性能 NA 开发一种能够直接学习图像聚类和对齐的多任务模型 图像对齐和聚类 计算机视觉 NA NA Jim-Net 图像 在七个数据集上进行了广泛评估 NA NA NA NA
365 2024-08-27
Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells
2021-Sep-27, RSC advances IF:3.9Q2
研究论文 本文首次应用深度卷积神经网络(ConvNets)于透射电子显微镜图像的高通量筛选催化剂层墨水阶段 首次将深度卷积神经网络应用于催化剂层墨水阶段的透射电子显微镜图像高通量筛选 NA 加速催化剂层设计和制造的进一步进展 聚合物电解质燃料电池的催化剂层墨水 机器学习 NA 深度学习算法 CNN 图像 NA NA NA NA NA
366 2024-08-27
Transmol: repurposing a language model for molecular generation
2021-Jul-27, RSC advances IF:3.9Q2
研究论文 本文利用自然语言处理中的transformer架构变体Transmol模型,应用于分子生成任务,并展示了其在生成分子库方面的有效性 首次将注意力机制应用于分子生成问题,并开发了一种新的双种子方法,以探索化学空间的未开发区域 NA 探索和改进机器学习在分子生成领域的应用 分子生成和分子库的构建 机器学习 NA transformer transformer 分子数据 NA NA NA NA NA
367 2024-08-27
Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images
2021-Mar, Precision clinical medicine IF:5.1Q1
研究论文 本文利用深度学习技术量化结直肠癌患者的粘液-肿瘤比例,并研究其对患者生存率的预测价值 首次使用深度学习技术量化粘液比例,并探讨其在结直肠癌中的预后价值 NA 量化粘液比例并研究其在结直肠癌患者中的预后价值 结直肠癌患者的粘液-肿瘤比例及其预后影响 数字病理 结直肠癌 深度学习 NA 图像 训练集419例,验证集315例 NA NA NA NA
368 2024-08-26
20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep Learning Reconstruction
2021-11, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
研究论文 本研究利用自监督深度学习重建技术,在5倍SMS和4倍平面加速的7T fMRI数据上实现了20倍加速的高质量图像重建 采用自监督学习方法进行深度学习重建,无需完全采样的训练数据集,显示出与监督学习相似的性能 NA 提高fMRI的空间和时间分辨率,以更准确地解析大脑中的神经活动 7T fMRI数据的高加速重建 计算机视觉 NA fMRI 深度学习 图像 NA NA NA NA NA
369 2024-08-26
ICON: Learning Regular Maps Through Inverse Consistency
2021-Oct, Proceedings. IEEE International Conference on Computer Vision
研究论文 研究如何通过逆一致性损失来学习数据样本之间的正则化映射 提出了一种结合深度网络、逆一致性损失和随机离网格插值的方法,以获得近似微分同胚的空间变换,无需精心调整的显式正则化器 未提及具体限制 探索在计算图像配准时,是否可以通过仅使用逆一致性损失来获得空间正则性 空间变换的正则性 计算机视觉 NA 深度学习 深度网络 图像 未提及具体样本数量 NA NA NA NA
370 2024-08-26
E-Learning Research Trends in Higher Education in Light of COVID-19: A Bibliometric Analysis
2021, Frontiers in psychology IF:2.6Q2
研究论文 本文通过对602篇发表在Web of Science数据库中的研究进行文献计量分析,概述了COVID-19期间高等教育领域电子学习的重要概念进展 研究探索了人工智能、机器学习和深度学习等新研究方向在电子学习中的应用 NA 分析COVID-19背景下高等教育领域电子学习的研究趋势 电子学习在高等教育中的应用及其相关研究 自然语言处理 NA 文献计量分析 NA 文本 602篇研究论文 NA NA NA NA
371 2024-08-25
An Internet-of-Medical-Things-Enabled Edge Computing Framework for Tackling COVID-19
2021-Nov-01, IEEE internet of things journal IF:8.2Q1
研究论文 本文开发了一个基于互联网医疗物联网(IoMT)的边缘计算框架,利用深度学习(DL)检测多样化的与COVID-19相关的健康症状,并生成用于医疗决策支持的报告和警报。 该研究利用IoMT收集家庭环境中的多样化情感和身体健康数据,并在资源受限的边缘环境中运行先进的深度学习应用,实现了本地化的数据处理和推理,确保了用户隐私、安全性和低延迟。 NA 开发一个边缘IoMT系统,用于在疫情期间管理家庭健康,并通过深度学习检测COVID-19症状。 COVID-19相关的健康症状和家庭环境中的情感及生理状态数据。 机器学习 COVID-19 深度学习(DL) NA 情感和生理状态数据 NA NA NA NA NA
372 2024-08-25
Computer Audition for Fighting the SARS-CoV-2 Corona Crisis-Introducing the Multitask Speech Corpus for COVID-19
2021-Nov-01, IEEE internet of things journal IF:8.2Q1
研究论文 本文介绍了一个用于COVID-19研究的多任务语音语料库,收集了51名确诊COVID-19患者的自然语音数据,并定义了三个分类任务来评估患者的身体和/或心理状态 提出了一个新颖的多任务语音语料库,用于COVID-19研究,填补了计算机听觉在传染病监测方面的研究空白 NA 利用计算机听觉技术支持COVID-19的预防、诊断、治疗、追踪和管理 COVID-19患者的语音数据及其身体和心理状态 机器学习 COVID-19 计算机听觉 深度学习 语音 51名确诊COVID-19患者 NA NA NA NA
373 2024-08-25
Automatic detection of cotton balls during brain surgery: Where deep learning meets ultrasound imaging to tackle foreign objects
2021-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文研究了使用深度学习和超声成像技术自动检测脑外科手术中棉球的方法 采用3D打印的自定义深度盒和Butterfly IQ手持超声探头,结合YOLOv4算法进行实时物体识别 NA 提高脑外科手术中棉球的检测准确性和速度 棉球在脑外科手术中的检测 计算机视觉 NA 超声成像 YOLOv4 图像 棉球在不同位置和深度下的检测 NA NA NA NA
374 2024-08-25
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
2021, Frontiers in oncology IF:3.5Q2
研究论文 本文提出了一种基于深度学习的流程,用于在23种癌症的全切片图像中分类肿瘤浸润淋巴细胞(TILs),并生成TIL图 该研究使用了三种先进的卷积神经网络架构(VGG16、Inception-V4和ResNet-34),并结合了病理学家手动标注和计算机生成的标签进行训练,提高了模型的准确性和F分数 NA 研究肿瘤浸润淋巴细胞作为生物标志物在预测疾病进展和临床结果中的作用 23种不同类型的癌症中的肿瘤浸润淋巴细胞 数字病理学 多种癌症 深度学习 CNN 图像 涉及23种癌症的全切片图像,包括大量训练数据和手动标注的图像块 NA NA NA NA
375 2024-08-25
An Interpretable Deep Learning Model for Covid-19 Detection With Chest X-Ray Images
2021, IEEE access : practical innovations, open solutions IF:3.4Q2
研究论文 本文介绍了一种用于COVID-19检测的可解释深度学习模型Gen-ProtoPNet Gen-ProtoPNet模型使用了广义距离函数,能够处理任意类型的空间维度原型,提高了模型的解释性 NA 开发一种可解释的深度学习模型用于COVID-19的及时准确检测 COVID-19的检测 机器学习 COVID-19 深度学习 Gen-ProtoPNet 图像 使用了X射线图像数据集 NA NA NA NA
376 2024-08-25
Learning Predictive and Interpretable Timeseries Summaries from ICU Data
2021, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:35309006
研究论文 本文提出了一种新方法,从ICU数据中学习既具有预测性又易于人类理解的临床时间序列摘要 提出的摘要方法由简单直观的临床数据函数组成,如“下降的平均动脉压”,这些摘要不仅易于理解,而且在性能上与最先进的深度学习模型相当 NA 提高重症监护病房风险分层任务的性能,并增强模型的可解释性 临床时间序列数据 机器学习 NA NA 深度学习模型 时间序列数据 NA NA NA NA NA
377 2024-08-24
Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps
2021-Dec, European radiology IF:4.7Q1
研究论文 开发了一种基于深度学习的肺血管分割算法(DLVS),用于非对比剂胸部CT图像,并探讨其在慢性阻塞性肺疾病(COPD)患者血管重塑评估中的临床应用 利用双源CT扫描仪生成的时空匹配的50千电子伏特增强图像和虚拟非对比剂图像,开发了一种新的深度学习肺血管分割算法 NA 开发和验证一种基于深度学习的肺血管分割算法,并评估其在COPD患者中的临床应用 COPD患者的肺血管分割 计算机视觉 慢性阻塞性肺疾病 双源CT扫描 3D U-Net 图像 开发阶段使用了104个肺部CT血管造影扫描(共49,054张切片),外部验证使用了14个供应商独立的非对比剂CT图像和3个VESSEL 12挑战公开数据集,临床验证包括281名COPD患者 NA NA NA NA
378 2024-08-24
Comparing deep learning-based automatic segmentation of breast masses to expert interobserver variability in ultrasound imaging
2021-12, Computers in biology and medicine IF:7.0Q1
研究论文 本文比较了基于深度学习的乳腺肿块自动分割模型与超声图像中专家间观察者变异性的表现 提出了一种高表现的深度学习分割模型,并与三位专家的手动分割结果进行比较 深度学习模型通常只与一位专家进行评估,其误差是否在临床可接受范围内尚不清楚 研究深度学习技术在医学图像处理中的可靠性和重复性 乳腺肿块的自动分割 计算机视觉 乳腺肿瘤 深度学习 CNN 图像 使用了455名患者的甲状腺超声分割数据集和733名患者的乳腺超声分割数据集 NA NA NA NA
379 2024-08-24
Deep learning-based facial image analysis in medical research: a systematic review protocol
2021-11-11, BMJ open IF:2.4Q1
综述 本文旨在通过系统综述方法,探讨深度学习在医学研究中基于面部图像分析的特征和效果 本文旨在填补关于深度学习在医学面部图像分析领域现状的认知空白,并提供对该技术在疾病检测、诊断和预后应用中的特征、挑战和机遇的深入理解 NA 了解深度学习在医学面部图像分析中的应用现状、挑战和机遇 深度学习在医学面部图像分析的研究 计算机视觉 NA 深度学习 NA 图像 NA NA NA NA NA
380 2024-08-24
Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors
2021-Nov-11, Journal of medical systems IF:3.5Q2
研究论文 本文提出了一种基于队列和轨迹分析(CTA)模块的个性化支持系统,用于癌症幸存者,该系统集成在名为EREBOTS的基于代理的个性化聊天机器人中 引入CTA模块,结合生存估计模型、机器学习和深度学习技术,为临床医生提供个性化治疗选择的证据,并为患者提供适应其状况和轨迹的定制建议 NA 开发一种个性化支持系统,以提高癌症幸存者的生存质量 癌症幸存者及其个性化支持需求 机器学习 癌症 机器学习, 深度学习 生存估计模型 NA NA NA NA NA NA
回到顶部