本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
461 | 2024-08-12 |
In silico drug repositioning using deep learning and comprehensive similarity measures
2021-Jun-01, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-020-03882-y
PMID:34074242
|
研究论文 | 本文开发了一种深度门控循环单元模型,利用综合相似性度量和高斯交互轮廓核来预测潜在的药物-疾病相互作用,以加速药物再定位和新药研发 | 本文采用了深度门控循环单元模型和综合相似性度量,以及高斯交互轮廓核来预测药物-疾病相互作用,这一方法在之前的研究中未被充分利用 | NA | 加速药物再定位和新药研发 | 药物-疾病相互作用 | 机器学习 | NA | 深度学习 | 门控循环单元 (GRU) | 化学指纹和疾病关联数据 | 两个基准数据集 |
462 | 2024-08-12 |
Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images
2021-06, Journal for immunotherapy of cancer
IF:10.3Q1
DOI:10.1136/jitc-2020-002118
PMID:34135101
|
研究论文 | 本文利用深度学习技术从PET/CT图像中非侵入性地测量PD-L1状态并预测免疫治疗反应 | 提出了一种基于深度学习的小残差卷积网络(SResCNN)来预测PD-L1表达状态,并验证了其在预测无进展生存期(PFS)和总生存期(OS)方面的有效性 | 研究结果需要在大规模前瞻性试验中进一步验证 | 开发一种替代免疫组化(IHC)的非侵入性方法来测量PD-L1状态,以指导个体化治疗决策 | 非小细胞肺癌(NSCLC)患者 | 计算机视觉 | 肺癌 | PET/CT成像 | 小残差卷积网络(SResCNN) | 图像 | 697名NSCLC患者 |
463 | 2024-08-12 |
Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
2021-05-04, Journal of the American Heart Association
IF:5.0Q1
DOI:10.1161/JAHA.120.019905
PMID:33899504
|
研究论文 | 本研究评估了一种深度学习算法通过商用数字听诊器平台检测心脏杂音和临床显著性瓣膜心脏病的性能 | 该算法能够检测到与专家心脏病医生相媲美的心脏杂音和临床显著性主动脉瓣狭窄及二尖瓣反流 | 算法在检测较轻微的杂音(1级强度)时灵敏度较低 | 评估深度学习算法在通过数字听诊器平台检测心脏杂音和临床显著性瓣膜心脏病中的表现 | 心脏杂音和临床显著性瓣膜心脏病 | 机器学习 | 心血管疾病 | 深度学习 | 深度神经网络 | 音频 | 962名患者的心音记录 |
464 | 2024-08-12 |
An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes
2021, Journal of Cancer
IF:3.3Q2
DOI:10.7150/jca.58076
PMID:34093817
|
研究论文 | 本研究全面探讨了甲基化/自噬相关基因(MARGs)和免疫浸润在肿瘤微环境中对喉癌预后的影响 | 建立了基于MARGs和免疫细胞的预后风险评分系统(pRS),并利用单细胞RNA测序技术揭示了高风险细胞簇中的成纤维细胞富集 | NA | 探讨肿瘤微环境中的免疫/甲基化/自噬特征对喉癌临床预后和单细胞基因型的作用 | 喉癌的预后和单细胞基因型 | 数字病理学 | 喉癌 | 单细胞RNA测序 | 深度学习模型 | 基因数据 | 126个MARGs和10种免疫细胞,以及临床样本和GEO数据集 |
465 | 2024-08-12 |
COVID-19 pneumonia on chest X-rays: Performance of a deep learning-based computer-aided detection system
2021, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0252440
PMID:34097708
|
研究论文 | 本研究评估了一种基于深度学习的计算机辅助检测系统(CAD)在胸部X光片上识别COVID-19肺炎的性能 | 首次详细研究了现有CAD系统在胸部X光片上识别COVID-19及其相关肺炎的性能,并展示了CAD系统在资源有限环境下辅助非放射科医生进行诊断的潜力 | 研究仅使用了商业化的、监管批准的CAD系统,未探讨其他可能的CAD系统的性能 | 评估CAD系统在胸部X光片上识别COVID-19肺炎的性能,并探讨其在资源有限环境下的应用潜力 | COVID-19患者的胸部X光片 | 计算机视觉 | COVID-19 | 深度学习 | NA | 图像 | 来自四个机构的COVID-19阳性患者和来自一个机构的阴性患者的胸部X光片 |
466 | 2024-08-12 |
MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends
2021, Cancer management and research
IF:2.5Q3
DOI:10.2147/CMAR.S309252
PMID:34103987
|
综述 | 本文综述了磁共振成像(MRI)在评估局部晚期直肠癌新辅助治疗后完全反应中的当前状态和未来趋势 | 近年来,新的技术如纹理分析、放射组学分析和深度学习在基于MRI参数的评估中显示出巨大潜力 | 目前基于形态学和功能性MRI的参数仍存在局限性,结果不一致 | 旨在回顾并更好地理解这些基于MRI的方法在评估直肠癌完全反应中的优势、局限性和未来趋势 | 局部晚期直肠癌患者新辅助治疗后的完全肿瘤反应评估 | NA | 直肠癌 | 磁共振成像(MRI) | NA | 影像 | NA |
467 | 2024-08-12 |
An optimized transfer learning-based approach for automatic diagnosis of COVID-19 from chest x-ray images
2021, PeerJ. Computer science
DOI:10.7717/peerj-cs.555
PMID:34141886
|
研究论文 | 本文介绍了一种基于优化迁移学习的自动诊断COVID-19的方法,通过优化十二种CNN架构的网络超参数,使用胸部X光图像进行COVID-19病例诊断 | 采用Manta-Ray Foraging Optimization (MRFO)算法优化CNN架构的超参数,提高了分类性能 | NA | 开发一种快速准确的COVID-19自动诊断方法,以应对检测试剂盒短缺的问题 | COVID-19、细菌性肺炎、病毒性肺炎和正常病例的分类 | 计算机视觉 | COVID-19 | 迁移学习 | CNN | 图像 | 从八个不同的公共数据集中收集的数据,用于分类四类病例 |
468 | 2024-08-11 |
Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data
2021-May-25, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-021-04146-z
PMID:34034645
|
研究论文 | 本研究提出了一种名为Super.FELT的新方法,利用三元组损失的监督特征提取学习来预测药物反应,并有效降低多组学数据的高维度 | Super.FELT通过三个阶段(特征选择、特征编码和药物反应二分类)实现了比其他方法更好的性能,特别是在PDX和TCGA的外部验证中 | NA | 开发一种新的方法,利用监督深度学习模型有效降低多组学数据的高维度,以提高药物反应预测的准确性 | 使用多组学数据(包括突变、拷贝数变异和基因表达)来预测药物反应 | 机器学习 | NA | 三元组损失 | 监督深度学习模型 | 多组学数据 | 使用了来自GDSC、CCLE、CTRP、PDX和TCGA的数据集 |
469 | 2024-08-11 |
Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
2021-05-25, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-90292-6
PMID:34035386
|
研究论文 | 本研究利用深度学习技术对大规模MRI数据进行基于形态学的骨关节炎表型分类 | 首次使用卷积神经网络对膝关节MRI图像中的骨、半月板/软骨、炎症和肥大表型进行分类,并评估其与骨关节炎发生和发展的关联 | NA | 旨在通过MRI图像的形态学表型分类,预测骨关节炎的未来发生情况,从而改进治疗药物的纳入标准和疗效 | 膝关节MRI图像中的骨、半月板/软骨、炎症和肥大表型 | 机器学习 | 骨关节炎 | 卷积神经网络 | CNN | 图像 | 4791名参与者的膝关节MRI数据 |
470 | 2024-08-11 |
Understanding Public Perceptions of COVID-19 Contact Tracing Apps: Artificial Intelligence-Enabled Social Media Analysis
2021-05-17, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/26618
PMID:33939622
|
研究论文 | 本研究通过人工智能驱动的社交媒体分析,探讨了英国公众对COVID-19接触追踪应用的看法 | 采用混合规则集成的模型,结合了先进的基于词典规则和深度学习方法 | NA | 探索人工智能驱动的社交媒体分析在理解公众对COVID-19接触追踪应用看法方面的适用性 | 公众对COVID-19接触追踪应用的态度 | 自然语言处理 | NA | 人工智能 | 混合规则集成模型 | 文本 | 超过10,000条相关社交媒体帖子 |
471 | 2024-08-11 |
Detecting the pulmonary trunk in CT scout views using deep learning
2021-05-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-89647-w
PMID:33986402
|
研究论文 | 本文通过深度学习方法自动定位CT scout视图中的肺动脉主干区域 | 使用U-Net模型自动定位肺动脉主干区域,其准确度与放射技师相当 | NA | 自动化CT scout视图中肺动脉主干的定位任务 | CT scout视图中的肺动脉主干区域 | 计算机视觉 | NA | 深度学习 | U-Net | 图像 | 620个CT scout视图,来自563名患者 |
472 | 2024-08-11 |
Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram
2021-05-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-89742-y
PMID:33986459
|
研究论文 | 本研究旨在开发一种人工智能模型,用于通过正交平片检测颞下颌关节骨关节炎,并与口腔颌面放射专家的诊断性能进行比较 | 研究通过重新分类不确定的骨关节炎图像,提高了人工智能模型的诊断准确性,使其与专家的诊断性能相当 | 初始模型在处理三种分类时表现不佳,需要通过重新分类来改善性能 | 开发和评估人工智能模型在颞下颌关节骨关节炎诊断中的应用 | 颞下颌关节骨关节炎的诊断 | 计算机视觉 | 颞下颌关节骨关节炎 | 深度学习 | ResNet | 图像 | 1189张正交平片图像 |
473 | 2024-08-11 |
AI-assisted superresolution cosmological simulations
2021-05-11, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2022038118
PMID:33947816
|
研究论文 | 本文利用人工智能(特别是深度学习)技术,通过神经网络从高分辨率图像数据中学习,并生成低分辨率宇宙学N体模拟的超分辨率版本 | 本文首次将深度学习技术应用于宇宙学N体模拟,生成高分辨率模拟,能够增强模拟分辨率并预测粒子位移 | NA | 利用人工智能技术提高宇宙学模拟的分辨率 | 宇宙学N体模拟 | 机器学习 | NA | 深度学习 | 神经网络 | 图像 | 16对小体积低分辨率-高分辨率模拟 |
474 | 2024-08-11 |
Synaptic metaplasticity in binarized neural networks
2021-05-05, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-021-22768-y
PMID:33953183
|
研究论文 | 本文研究了二值化神经网络中的突触可塑性,提出了一种新的训练技术以减轻灾难性遗忘问题 | 将二值化神经网络的隐藏权重解释为可塑性变量,并提出了一种新的训练技术,无需先前数据或数据集之间的正式边界即可减少灾难性遗忘 | NA | 探索神经科学中的可塑性行为如何应用于深度神经网络以减轻灾难性遗忘 | 二值化神经网络及其在多任务和流学习中的应用 | 机器学习 | NA | NA | 二值化神经网络 | NA | NA |
475 | 2024-08-11 |
Deep learning for gradability classification of handheld, non-mydriatic retinal images
2021-05-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-89027-4
PMID:33947946
|
研究论文 | 本文研究使用深度学习技术对非散瞳手持式视网膜图像的可分级性进行分类 | 提出了一种紧凑型深度学习模型,用于在采集阶段预测视网膜图像的可分级性,以提高可分级图像的比例和糖尿病视网膜病变(STDR)的检测率 | NA | 旨在提高非临床环境下使用手持设备采集的视网膜图像的可分级性,从而提高STDR的检测 | 非散瞳手持式视网膜图像的可分级性 | 计算机视觉 | 糖尿病视网膜病变 | 深度学习(DL) | 紧凑型深度学习模型 | 图像 | 从18,277名患者眼中采集的40,126张图像中,有16,170名患者眼(35,319张图像)符合条件,并从中抽取了3261张视网膜图像(1490名患者眼)进行标记 |
476 | 2024-08-11 |
Simulation-to-real domain adaptation with teacher-student learning for endoscopic instrument segmentation
2021-May, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-021-02383-4
PMID:33982232
|
研究论文 | 本文介绍了一种基于教师-学生学习方法的模拟到真实域适应技术,用于内窥镜手术器械分割 | 提出了一种教师-学生学习方法,联合学习标注的模拟数据和未标注的真实数据,以解决模拟到真实无监督域适应问题 | 文章未明确提及具体的局限性 | 旨在提高内窥镜手术器械分割的自动化水平,减少对临床专家手动标注的依赖 | 内窥镜视频流中的手术器械分割 | 计算机视觉 | NA | 教师-学生学习方法 | NA | 视频 | 涉及三个数据集 |
477 | 2024-08-11 |
Model Simplification of Deep Random Forest for Real-Time Applications of Various Sensor Data
2021-Apr-25, Sensors (Basel, Switzerland)
DOI:10.3390/s21093004
PMID:33922953
|
研究论文 | 本文提出了一种新的方法来简化深度随机森林(DRF)的黑盒模型,通过提出的规则消除方法来量化特征贡献和频率,从而实现模型简化。 | 本文的创新点在于提出了一种新的规则消除方法,通过量化特征贡献和频率来简化深度随机森林模型,使其参数和规则数量减少,同时保持了较高的分类准确性。 | NA | 研究目的是简化深度随机森林模型,提高其实时应用的性能和效率。 | 研究对象是深度随机森林模型及其在各种传感器数据实时应用中的表现。 | 机器学习 | NA | 深度随机森林(DRF) | 深度随机森林(DRF) | 传感器数据 | 使用基准传感器数据集进行验证 |
478 | 2024-08-11 |
Automatic Pest Counting from Pheromone Trap Images Using Deep Learning Object Detectors for Matsucoccus thunbergianae Monitoring
2021-Apr-12, Insects
IF:2.7Q1
DOI:10.3390/insects12040342
PMID:33921492
|
研究论文 | 本研究提出了一种基于深度学习的自动计数算法,用于从诱捕器图像中监测松黑松小蠹的发生和种群数量 | 研究采用了图像裁剪方法以成功检测图像中的小物体,并评估了16种模型在不同条件下的检测和计数性能 | 未提及具体限制 | 开发一种基于人工智能的自动计数方法,用于持续且准确地监测害虫 | 松黑松小蠹 | 计算机视觉 | NA | 深度学习 | 目标检测模型 | 图像 | 使用了在实地收集的诱捕器图像进行训练、验证和测试 |
479 | 2024-08-11 |
Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning
2021-Apr-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.415962
PMID:33996229
|
研究论文 | 本文提出了一种使用监督和非监督深度学习模型对非线性多模态成像进行计算染色的方法 | 首次使用生成对抗网络(GANs)在非监督方式下对非线性多模态图像进行计算染色 | NA | 开发一种无需实验室染色过程的诊断应用计算染色技术 | 非线性多模态成像与H&E染色图像的相关性 | 数字病理学 | NA | 非线性多模态成像 | 生成对抗网络(GAN) | 图像 | NA |
480 | 2024-08-11 |
Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening
2021-Mar, Chronic diseases and translational medicine
DOI:10.1016/j.cdtm.2021.02.001
PMID:34013178
|
研究论文 | 本文探讨了人工智能在数字胸部X光片阅读中用于肺结核筛查的应用 | 结合人工智能和大量医学图像,为计算机辅助检测系统在医学应用中的建立提供了新的机会,特别是在深度学习技术时代 | NA | 研究人工智能在肺结核筛查中的应用 | 肺结核的筛查和诊断 | 计算机视觉 | 肺结核 | 深度学习 | NA | 图像 | NA |