深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202101-202112] [清除筛选条件]
当前共找到 646 篇文献,本页显示第 501 - 520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
501 2024-08-12
An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes
2021, Journal of Cancer IF:3.3Q2
研究论文 本研究全面探讨了甲基化/自噬相关基因(MARGs)和免疫浸润在肿瘤微环境中对喉癌预后的影响 建立了基于MARGs和免疫细胞的预后风险评分系统(pRS),并利用单细胞RNA测序技术揭示了高风险细胞簇中的成纤维细胞富集 NA 探讨肿瘤微环境中的免疫/甲基化/自噬特征对喉癌临床预后和单细胞基因型的作用 喉癌的预后和单细胞基因型 数字病理学 喉癌 单细胞RNA测序 深度学习模型 基因数据 126个MARGs和10种免疫细胞,以及临床样本和GEO数据集 NA NA NA NA
502 2024-08-12
COVID-19 pneumonia on chest X-rays: Performance of a deep learning-based computer-aided detection system
2021, PloS one IF:2.9Q1
研究论文 本研究评估了一种基于深度学习的计算机辅助检测系统(CAD)在胸部X光片上识别COVID-19肺炎的性能 首次详细研究了现有CAD系统在胸部X光片上识别COVID-19及其相关肺炎的性能,并展示了CAD系统在资源有限环境下辅助非放射科医生进行诊断的潜力 研究仅使用了商业化的、监管批准的CAD系统,未探讨其他可能的CAD系统的性能 评估CAD系统在胸部X光片上识别COVID-19肺炎的性能,并探讨其在资源有限环境下的应用潜力 COVID-19患者的胸部X光片 计算机视觉 COVID-19 深度学习 NA 图像 来自四个机构的COVID-19阳性患者和来自一个机构的阴性患者的胸部X光片 NA NA NA NA
503 2024-08-12
MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends
2021, Cancer management and research IF:2.5Q3
综述 本文综述了磁共振成像(MRI)在评估局部晚期直肠癌新辅助治疗后完全反应中的当前状态和未来趋势 近年来,新的技术如纹理分析、放射组学分析和深度学习在基于MRI参数的评估中显示出巨大潜力 目前基于形态学和功能性MRI的参数仍存在局限性,结果不一致 旨在回顾并更好地理解这些基于MRI的方法在评估直肠癌完全反应中的优势、局限性和未来趋势 局部晚期直肠癌患者新辅助治疗后的完全肿瘤反应评估 NA 直肠癌 磁共振成像(MRI) NA 影像 NA NA NA NA NA
504 2024-08-12
An optimized transfer learning-based approach for automatic diagnosis of COVID-19 from chest x-ray images
2021, PeerJ. Computer science
研究论文 本文介绍了一种基于优化迁移学习的自动诊断COVID-19的方法,通过优化十二种CNN架构的网络超参数,使用胸部X光图像进行COVID-19病例诊断 采用Manta-Ray Foraging Optimization (MRFO)算法优化CNN架构的超参数,提高了分类性能 NA 开发一种快速准确的COVID-19自动诊断方法,以应对检测试剂盒短缺的问题 COVID-19、细菌性肺炎、病毒性肺炎和正常病例的分类 计算机视觉 COVID-19 迁移学习 CNN 图像 从八个不同的公共数据集中收集的数据,用于分类四类病例 NA NA NA NA
505 2024-08-11
Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data
2021-May-25, BMC bioinformatics IF:2.9Q1
研究论文 本研究提出了一种名为Super.FELT的新方法,利用三元组损失的监督特征提取学习来预测药物反应,并有效降低多组学数据的高维度 Super.FELT通过三个阶段(特征选择、特征编码和药物反应二分类)实现了比其他方法更好的性能,特别是在PDX和TCGA的外部验证中 NA 开发一种新的方法,利用监督深度学习模型有效降低多组学数据的高维度,以提高药物反应预测的准确性 使用多组学数据(包括突变、拷贝数变异和基因表达)来预测药物反应 机器学习 NA 三元组损失 监督深度学习模型 多组学数据 使用了来自GDSC、CCLE、CTRP、PDX和TCGA的数据集 NA NA NA NA
506 2024-08-11
Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
2021-05-25, Scientific reports IF:3.8Q1
研究论文 本研究利用深度学习技术对大规模MRI数据进行基于形态学的骨关节炎表型分类 首次使用卷积神经网络对膝关节MRI图像中的骨、半月板/软骨、炎症和肥大表型进行分类,并评估其与骨关节炎发生和发展的关联 NA 旨在通过MRI图像的形态学表型分类,预测骨关节炎的未来发生情况,从而改进治疗药物的纳入标准和疗效 膝关节MRI图像中的骨、半月板/软骨、炎症和肥大表型 机器学习 骨关节炎 卷积神经网络 CNN 图像 4791名参与者的膝关节MRI数据 NA NA NA NA
507 2024-08-11
Understanding Public Perceptions of COVID-19 Contact Tracing Apps: Artificial Intelligence-Enabled Social Media Analysis
2021-05-17, Journal of medical Internet research IF:5.8Q1
研究论文 本研究通过人工智能驱动的社交媒体分析,探讨了英国公众对COVID-19接触追踪应用的看法 采用混合规则集成的模型,结合了先进的基于词典规则和深度学习方法 NA 探索人工智能驱动的社交媒体分析在理解公众对COVID-19接触追踪应用看法方面的适用性 公众对COVID-19接触追踪应用的态度 自然语言处理 NA 人工智能 混合规则集成模型 文本 超过10,000条相关社交媒体帖子 NA NA NA NA
508 2024-08-11
Detecting the pulmonary trunk in CT scout views using deep learning
2021-05-13, Scientific reports IF:3.8Q1
研究论文 本文通过深度学习方法自动定位CT scout视图中的肺动脉主干区域 使用U-Net模型自动定位肺动脉主干区域,其准确度与放射技师相当 NA 自动化CT scout视图中肺动脉主干的定位任务 CT scout视图中的肺动脉主干区域 计算机视觉 NA 深度学习 U-Net 图像 620个CT scout视图,来自563名患者 NA NA NA NA
509 2024-08-11
Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram
2021-05-13, Scientific reports IF:3.8Q1
研究论文 本研究旨在开发一种人工智能模型,用于通过正交平片检测颞下颌关节骨关节炎,并与口腔颌面放射专家的诊断性能进行比较 研究通过重新分类不确定的骨关节炎图像,提高了人工智能模型的诊断准确性,使其与专家的诊断性能相当 初始模型在处理三种分类时表现不佳,需要通过重新分类来改善性能 开发和评估人工智能模型在颞下颌关节骨关节炎诊断中的应用 颞下颌关节骨关节炎的诊断 计算机视觉 颞下颌关节骨关节炎 深度学习 ResNet 图像 1189张正交平片图像 NA NA NA NA
510 2024-08-11
AI-assisted superresolution cosmological simulations
2021-05-11, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文利用人工智能(特别是深度学习)技术,通过神经网络从高分辨率图像数据中学习,并生成低分辨率宇宙学N体模拟的超分辨率版本 本文首次将深度学习技术应用于宇宙学N体模拟,生成高分辨率模拟,能够增强模拟分辨率并预测粒子位移 NA 利用人工智能技术提高宇宙学模拟的分辨率 宇宙学N体模拟 机器学习 NA 深度学习 神经网络 图像 16对小体积低分辨率-高分辨率模拟 NA NA NA NA
511 2024-08-11
Synaptic metaplasticity in binarized neural networks
2021-05-05, Nature communications IF:14.7Q1
研究论文 本文研究了二值化神经网络中的突触可塑性,提出了一种新的训练技术以减轻灾难性遗忘问题 将二值化神经网络的隐藏权重解释为可塑性变量,并提出了一种新的训练技术,无需先前数据或数据集之间的正式边界即可减少灾难性遗忘 NA 探索神经科学中的可塑性行为如何应用于深度神经网络以减轻灾难性遗忘 二值化神经网络及其在多任务和流学习中的应用 机器学习 NA NA 二值化神经网络 NA NA NA NA NA NA
512 2024-08-11
Deep learning for gradability classification of handheld, non-mydriatic retinal images
2021-05-04, Scientific reports IF:3.8Q1
研究论文 本文研究使用深度学习技术对非散瞳手持式视网膜图像的可分级性进行分类 提出了一种紧凑型深度学习模型,用于在采集阶段预测视网膜图像的可分级性,以提高可分级图像的比例和糖尿病视网膜病变(STDR)的检测率 NA 旨在提高非临床环境下使用手持设备采集的视网膜图像的可分级性,从而提高STDR的检测 非散瞳手持式视网膜图像的可分级性 计算机视觉 糖尿病视网膜病变 深度学习(DL) 紧凑型深度学习模型 图像 从18,277名患者眼中采集的40,126张图像中,有16,170名患者眼(35,319张图像)符合条件,并从中抽取了3261张视网膜图像(1490名患者眼)进行标记 NA NA NA NA
513 2024-08-11
Simulation-to-real domain adaptation with teacher-student learning for endoscopic instrument segmentation
2021-May, International journal of computer assisted radiology and surgery IF:2.3Q2
研究论文 本文介绍了一种基于教师-学生学习方法的模拟到真实域适应技术,用于内窥镜手术器械分割 提出了一种教师-学生学习方法,联合学习标注的模拟数据和未标注的真实数据,以解决模拟到真实无监督域适应问题 文章未明确提及具体的局限性 旨在提高内窥镜手术器械分割的自动化水平,减少对临床专家手动标注的依赖 内窥镜视频流中的手术器械分割 计算机视觉 NA 教师-学生学习方法 NA 视频 涉及三个数据集 NA NA NA NA
514 2024-08-11
Model Simplification of Deep Random Forest for Real-Time Applications of Various Sensor Data
2021-Apr-25, Sensors (Basel, Switzerland)
研究论文 本文提出了一种新的方法来简化深度随机森林(DRF)的黑盒模型,通过提出的规则消除方法来量化特征贡献和频率,从而实现模型简化。 本文的创新点在于提出了一种新的规则消除方法,通过量化特征贡献和频率来简化深度随机森林模型,使其参数和规则数量减少,同时保持了较高的分类准确性。 NA 研究目的是简化深度随机森林模型,提高其实时应用的性能和效率。 研究对象是深度随机森林模型及其在各种传感器数据实时应用中的表现。 机器学习 NA 深度随机森林(DRF) 深度随机森林(DRF) 传感器数据 使用基准传感器数据集进行验证 NA NA NA NA
515 2024-08-11
Automatic Pest Counting from Pheromone Trap Images Using Deep Learning Object Detectors for Matsucoccus thunbergianae Monitoring
2021-Apr-12, Insects IF:2.7Q1
研究论文 本研究提出了一种基于深度学习的自动计数算法,用于从诱捕器图像中监测松黑松小蠹的发生和种群数量 研究采用了图像裁剪方法以成功检测图像中的小物体,并评估了16种模型在不同条件下的检测和计数性能 未提及具体限制 开发一种基于人工智能的自动计数方法,用于持续且准确地监测害虫 松黑松小蠹 计算机视觉 NA 深度学习 目标检测模型 图像 使用了在实地收集的诱捕器图像进行训练、验证和测试 NA NA NA NA
516 2024-08-11
Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning
2021-Apr-01, Biomedical optics express IF:2.9Q2
研究论文 本文提出了一种使用监督和非监督深度学习模型对非线性多模态成像进行计算染色的方法 首次使用生成对抗网络(GANs)在非监督方式下对非线性多模态图像进行计算染色 NA 开发一种无需实验室染色过程的诊断应用计算染色技术 非线性多模态成像与H&E染色图像的相关性 数字病理学 NA 非线性多模态成像 生成对抗网络(GAN) 图像 NA NA NA NA NA
517 2024-08-11
Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening
2021-Mar, Chronic diseases and translational medicine
研究论文 本文探讨了人工智能在数字胸部X光片阅读中用于肺结核筛查的应用 结合人工智能和大量医学图像,为计算机辅助检测系统在医学应用中的建立提供了新的机会,特别是在深度学习技术时代 NA 研究人工智能在肺结核筛查中的应用 肺结核的筛查和诊断 计算机视觉 肺结核 深度学习 NA 图像 NA NA NA NA NA
518 2024-08-11
RUN-UP: Accelerated multishot diffusion-weighted MRI reconstruction using an unrolled network with U-Net as priors
2021-02, Magnetic resonance in medicine IF:3.0Q2
研究论文 本文提出了一种使用展开网络和U-Net先验的加速多重扩散加权磁共振成像(MRI)重建方法 该方法通过深度学习实现了多重扩散加权MRI重建的加速和改进,重建时间缩短至0.1秒每图像,图像质量与联合重建目标相当 NA 加速和改进多重扩散加权MRI重建 多重扩散加权MRI重建 计算机视觉 NA MRI U-Net 图像 体内脑和乳腺实验 NA NA NA NA
519 2024-08-11
Development and Validation of a Nomogram for Preoperative Prediction of Lymph Node Metastasis in Lung Adenocarcinoma Based on Radiomics Signature and Deep Learning Signature
2021, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在开发和验证一种基于放射组学特征和深度学习特征的诺模图,用于预测肺腺癌患者的术前淋巴结转移情况 本研究结合放射组学特征和深度学习特征,开发了一种新的预测模型,用于术前预测肺腺癌患者的淋巴结转移情况 本研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 开发和验证一种用于预测肺腺癌患者术前淋巴结转移的诺模图 肺腺癌患者的术前淋巴结转移情况 数字病理学 肺癌 CT(计算机断层扫描) CNN(卷积神经网络) 图像 训练集200例,内部验证集40例,外部验证集60例 NA NA NA NA
520 2024-08-11
Characterization of time-variant and time-invariant assessment of suicidality on Reddit using C-SSRS
2021, PloS one IF:2.9Q1
研究论文 本研究开发深度学习算法,基于C-SSRS评估Reddit数据中的自杀风险,考虑了风险的严重性和时间性 首次同时考虑自杀风险的严重性和时间性,并开发了时间变异和时间不变的深度学习模型进行评估 研究仅限于Reddit平台的数据,且模型性能在预测自杀相关行为和自杀尝试方面仍有提升空间 提高自杀风险评估的准确性,以便及时进行干预 Reddit平台上的自杀相关帖子和用户行为 机器学习 NA 深度学习 CNN 文本 使用基于C-SSRS标注的临床 adjudicated Reddit语料库进行评估 NA NA NA NA
回到顶部