本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121 | 2024-10-06 |
Automation of Lung Ultrasound Interpretation via Deep Learning for the Classification of Normal versus Abnormal Lung Parenchyma: A Multicenter Study
2021-Nov-04, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics11112049
PMID:34829396
|
研究论文 | 本文通过深度学习技术自动化肺部超声图像的解读,以区分正常和异常肺实质 | 利用深度学习技术实现肺部超声图像的自动化解读,提高了诊断的准确性和非专家用户的可用性 | NA | 开发一种基于深度学习的肺部超声图像自动解读系统,以区分正常和异常肺实质 | 肺部超声图像中的A线和B线 | 计算机视觉 | NA | 深度学习 | 神经网络 | 图像 | 272,891张标记的肺部超声图像用于训练,23,393帧用于外部验证,1162个视频用于临床应用 |
122 | 2024-10-06 |
Deep learning reveals disease-specific signatures of white matter pathology in tauopathies
2021-10-21, Acta neuropathologica communications
IF:6.2Q1
DOI:10.1186/s40478-021-01271-x
PMID:34674762
|
研究论文 | 本文利用机器学习方法识别了三种tauopathy(阿尔茨海默病、进行性核上性麻痹和皮质基底节变性)中白质病理的疾病特异性形态特征 | 发现了阿尔茨海默病、皮质基底节变性和进行性核上性麻痹中先前未被识别的tau形态,这些形态可能在疾病分类中具有重要意义 | 研究样本量较小,仅包括49个尸检脑样本 | 通过机器学习方法揭示tauopathy中白质病理的疾病特异性特征 | tauopathy中的白质病理 | 数字病理 | 神经退行性疾病 | 机器学习 | NA | 图像 | 49个尸检脑样本(16个阿尔茨海默病,13个皮质基底节变性,20个进行性核上性麻痹) |
123 | 2024-10-06 |
An Unsupervised Learning-Based Multi-Organ Registration Method for 3D Abdominal CT Images
2021-Sep-18, Sensors (Basel, Switzerland)
DOI:10.3390/s21186254
PMID:34577461
|
研究论文 | 本文提出了一种基于无监督学习的3D腹部CT图像多器官配准方法 | 引入了一种改进的无监督学习框架,通过嵌入粗到细递归级联网络(RCN)模块和拓扑保持损失函数,提高了多器官配准的准确性 | 未提及具体限制 | 开发一种能够满足实时和高精度临床需求的3D腹部CT图像多器官配准方法 | 3D腹部CT图像的多器官配准 | 计算机视觉 | NA | 无监督学习 | U-net | 图像 | 使用了四个公开数据库进行验证 |
124 | 2024-10-06 |
Artificial intelligence-driven assessment of radiological images for COVID-19
2021-09, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2021.104665
PMID:34343890
|
综述 | 本文综述了人工智能(AI)在COVID-19放射影像评估中的应用及其相关挑战 | 探讨了AI在COVID-19诊断和预后中的潜力,特别是通过胸部X光(CXR)和计算机断层扫描(CT)影像 | 样本量不足、非标准化影像协议、分割问题、公开COVID-19数据库的可用性、影像与临床信息的结合以及全面的临床验证是主要限制和挑战 | 旨在概述COVID-19 AI分析的工作流程,并讨论现有AI分析的局限性及其潜在改进 | COVID-19的放射影像评估 | 计算机视觉 | COVID-19 | 深度学习 | 混合模型(结合深度学习和显式放射组学) | 影像 | NA |
125 | 2024-10-06 |
Deep learning for improving non-destructive grain mapping in 3D
2021-Sep-01, IUCrJ
IF:2.9Q3
DOI:10.1107/S2052252521005480
PMID:34584734
|
研究论文 | 本文提出了一种利用深度学习神经网络改进实验室X射线衍射对比断层扫描(LabDCT)图像中晶粒结构三维无损表征的方法 | 本文创新性地使用深度学习神经网络来有效去除背景噪声,从而简化衍射点的分割过程 | NA | 改进实验室X射线衍射对比断层扫描图像中晶粒结构的三维无损表征 | 实验室X射线衍射对比断层扫描图像中的晶粒结构 | 计算机视觉 | NA | 深度学习 | 神经网络 | 图像 | 不同几何条件下测量的不同样本的实验图像 |
126 | 2024-10-06 |
Low-count whole-body PET with deep learning in a multicenter and externally validated study
2021-Aug-23, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-021-00497-2
PMID:34426629
|
研究论文 | 本文评估了深度学习算法在多中心、多供应商环境下对四倍减少计数的全身PET图像质量增强的性能和通用性 | 首次在多中心、多供应商的真实临床环境中评估了深度学习算法对低计数全身PET图像质量的增强效果 | 未提及 | 评估深度学习算法在多中心、多供应商环境下对低计数全身PET图像质量的增强效果 | 低计数全身PET图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 多中心、多供应商的真实临床环境中的患者数据 |
127 | 2024-10-06 |
COVID-19 diagnosis on CT scan images using a generative adversarial network and concatenated feature pyramid network with an attention mechanism
2021-Aug, Medical physics
IF:3.2Q1
DOI:10.1002/mp.15044
PMID:34117783
|
研究论文 | 本文提出了一种基于生成对抗网络和注意力机制的特征金字塔网络架构,用于在CT扫描图像上准确诊断COVID-19 | 本文创新性地结合了生成对抗网络和注意力机制的特征金字塔网络,显著提高了COVID-19诊断的准确性和召回率 | 本文未详细讨论模型的计算复杂度和训练时间,且未在更大规模的数据集上验证其泛化能力 | 开发和评估一种基于CT扫描图像实时准确诊断COVID-19的方法 | COVID-19的CT扫描图像 | 计算机视觉 | COVID-19 | 生成对抗网络 (GAN) | 特征金字塔网络 (FPN) | 图像 | 3个不同数量级的COVID-19 CT数据集 |
128 | 2024-10-06 |
Quantum algorithm for quicker clinical prognostic analysis: an application and experimental study using CT scan images of COVID-19 patients
2021-07-30, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-021-01588-6
PMID:34330278
|
研究论文 | 本文提出了一种基于量子机器学习算法的图像分类和分割方法,用于COVID-19患者的CT扫描图像分析 | 引入了量子机器学习(QML)在医学实践中的应用,并展示了量子神经网络(QNN)在COVID-19特征分类任务中优于传统深度学习模型的性能 | 需要进一步研究以评估在医疗设备中集成该模型的实施场景 | 开发一种更快速和准确的临床预测分析方法,以提高COVID-19患者的诊断效率 | COVID-19患者的CT扫描图像 | 计算机视觉 | COVID-19 | 量子机器学习(QML) | 量子神经网络(QNN) | 图像 | NA |
129 | 2024-10-06 |
Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma
2021-Apr-13, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging7040071
PMID:34460521
|
研究论文 | 本文开发了一种深度学习方法,通过语义分割标记高概率显示病理特征的区域,以协助皮肤病理学家评估基底细胞癌 | 本文引入了深度监督和解码器输出的线性组合两种训练策略,并分析了不同编码器对UNet网络性能的影响 | NA | 开发一种深度学习方法,协助皮肤病理学家快速准确地评估基底细胞癌的切除边缘 | 基底细胞癌的病理特征区域 | 计算机视觉 | 皮肤癌 | 深度学习 | UNet | 图像 | 650张全切片图像,包含3443个组织切片 |
130 | 2024-10-06 |
An Integrated Deep Network for Cancer Survival Prediction Using Omics Data
2021, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2021.568352
PMID:34337396
|
研究论文 | 本文使用集成深度信念网络对癌症患者的生存率进行预测,并进行风险分层 | 提出了一种集成深度信念网络,能够从不同组学数据中提取信息特征,并在中等规模的数据集上表现优异 | NA | 开发一种新的方法来预测癌症患者的生存率并进行风险分层 | 癌症患者的RNA、miRNA和甲基化分子数据 | 机器学习 | NA | 深度学习 | 深度信念网络 | 组学数据 | 836名患者 |
131 | 2024-10-06 |
Osteolysis: A Literature Review of Basic Science and Potential Computer-Based Image Processing Detection Methods
2021, Computational intelligence and neuroscience
DOI:10.1155/2021/4196241
PMID:34646317
|
综述 | 本文综述了骨溶解的基本科学原理及其潜在的基于计算机图像处理的检测方法 | 介绍了使用深度学习算法(如CNN、U-Net和Seg-UNet)进行医学图像处理,特别是在骨溶解检测和分割方面的应用 | NA | 探讨骨溶解的潜在计算机辅助检测方法 | 骨溶解的成因、机制和治疗方法,以及计算机图像处理技术在骨溶解检测中的应用 | 计算机视觉 | 骨科疾病 | 深度学习算法 | CNN, U-Net, Seg-UNet | 图像 | NA |
132 | 2024-10-06 |
Intelligent Solutions in Chest Abnormality Detection Based on YOLOv5 and ResNet50
2021, Journal of healthcare engineering
DOI:10.1155/2021/2267635
PMID:34691373
|
研究论文 | 本文提出了一种基于YOLOv5和ResNet50的胸部异常检测智能解决方案 | 本文创新性地结合了YOLOv5和ResNet50模型,以提高胸部异常检测的准确性和效率 | NA | 提高计算机辅助诊断系统在胸部异常检测中的准确性和效率 | 胸部异常检测和常见肺部疾病的分类 | 计算机视觉 | 肺部疾病 | 深度学习 | YOLOv5, ResNet50 | 图像 | 数据集来自VinBigData的VinLab平台 |
133 | 2024-10-06 |
The Longest Month: Analyzing COVID-19 Vaccination Opinions Dynamics From Tweets in the Month Following the First Vaccine Announcement
2021, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/ACCESS.2021.3059821
PMID:34786309
|
研究论文 | 分析在首个疫苗宣布后的一个月内,推特上关于COVID-19疫苗接种意见的动态变化 | 比较了经典机器学习与深度学习算法,选择表现最佳的分类器 | NA | 分析社交媒体上关于COVID-19疫苗接种的公众意见动态 | 推特上的COVID-19疫苗接种相关推文 | 自然语言处理 | NA | 机器学习 | NA | 文本 | 2,349,659条推文 |
134 | 2024-10-06 |
COVID-19 Multi-Targeted Drug Repurposing Using Few-Shot Learning
2021, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2021.693177
PMID:36303751
|
研究论文 | 本文介绍了一种新的深度学习模型,用于分子属性预测,并应用于COVID-19多靶点药物再利用 | 该模型采用图神经网络进行化学分子嵌入的计算学习,相比依赖大量标记实验数据的最先进方法,在预训练阶段无需手动标记,且在小样本数据上表现优异 | NA | 探索COVID-19多靶点药物再利用的新方法 | COVID-19治疗药物的多靶点分子筛选 | 机器学习 | COVID-19 | 图神经网络 | 深度学习模型 | 分子数据 | 小样本数据 |
135 | 2024-10-05 |
Detection of Cytopathic Effects Induced by Influenza, Parainfluenza, and Enterovirus Using Deep Convolution Neural Network
2021-Dec-30, Biomedicines
IF:3.9Q1
DOI:10.3390/biomedicines10010070
PMID:35052750
|
研究论文 | 本研究利用深度卷积神经网络(ResNet-50)和多任务学习模型,提高了流感、副流感病毒和肠道病毒引起的细胞病变效应(CPEs)的检测效率 | 首次使用深度学习技术(ResNet-50和多任务学习模型)来检测流感、副流感病毒和肠道病毒引起的细胞病变效应,显著提高了检测准确率和效率 | 需要进一步验证模型在不同细胞系和更多病毒类型上的适用性 | 提高病毒引起的细胞病变效应的检测效率和准确性 | 流感、副流感病毒和肠道病毒引起的细胞病变效应 | 计算机视觉 | NA | 深度学习 | ResNet-50 | 图像 | 涉及流感、副流感病毒和肠道病毒引起的细胞病变效应的数据 |
136 | 2024-10-05 |
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
2021-Jun-14, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-021-00469-6
PMID:34127777
|
研究论文 | 本文介绍了一种基于弱监督深度学习的自动Gleason分级系统 | 该系统不需要专家进行广泛的区域级手动注释或复杂的算法来生成区域级注释 | 受限于病例数量和其他因素 | 开发一种无需广泛区域级注释的人工智能系统来诊断前列腺癌 | 前列腺癌的Gleason分级 | 数字病理学 | 前列腺癌 | 深度学习 | NA | 图像 | 6664和936个前列腺穿刺单核切片(689和99例) |
137 | 2024-10-04 |
Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey
2021-Feb, Sustainable cities and society
IF:10.5Q1
DOI:10.1016/j.scs.2020.102589
PMID:33169099
|
综述 | 本文综述了深度学习在COVID-19医学图像处理中的应用现状 | 本文总结了2020年初以来大量关于深度学习在COVID-19医学图像处理中的研究工作 | 本文讨论了深度学习在COVID-19医学图像处理中实施的几个挑战和问题 | 总结和探讨深度学习在COVID-19医学图像处理中的应用 | COVID-19医学图像处理 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
138 | 2024-10-04 |
Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers
2021-01-30, Neuro-oncology
IF:16.4Q1
DOI:10.1093/neuonc/noaa163
PMID:32663285
|
研究论文 | 本文开发了一种基于深度学习的人工智能神经病理学家,用于通过苏木精-伊红染色切片图像和分子标记对胶质瘤进行分类 | 开发了一种新的挤压和激励块DenseNet模型,命名为SD-Net_WCE,用于胶质瘤分类任务 | NA | 确定深度学习是否可以应用于胶质瘤分类 | 胶质瘤的病理诊断和分类 | 数字病理学 | 脑肿瘤 | 深度学习 | 卷积神经网络 (CNN) | 图像 | 79,990个组织切片图像来自267名患者,56名患者的17,262个组织切片图像用于独立测试 |
139 | 2024-10-01 |
Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates
2021-12, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202102592
PMID:34719864
|
研究论文 | 本文介绍了一种改进的蛋白质结构预测方法trRosettaX,通过应用新的多尺度网络Res2Net和基于注意力的模块来利用多个同源模板,提高了预测精度 | 引入了新的多尺度网络Res2Net和基于注意力的模块,利用多个同源模板提高了蛋白质结构预测的精度 | NA | 提高蛋白质结构预测的准确性 | 蛋白质结构预测 | 机器学习 | NA | 深度学习 | Res2Net | 蛋白质结构数据 | 161个目标 |
140 | 2024-10-01 |
Detecting Parkinson Disease Using a Web-Based Speech Task: Observational Study
2021-10-19, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/26305
PMID:34665148
|
研究论文 | 本文提出了一种基于网络的语音任务框架,用于检测帕金森病 | 利用网络平台收集语音数据,并通过机器学习算法进行分析,实现远程帕金森病的筛查 | 数据主要来自美国,且部分数据质量较低,可能影响模型的泛化能力 | 开发一种便捷的远程筛查工具,帮助全球范围内的人们检测帕金森病 | 帕金森病患者和非患者的语音数据 | 机器学习 | 帕金森病 | 机器学习算法 | XGBoost | 语音数据 | 726名参与者,其中262名帕金森病患者,464名非患者,平均年龄61岁 |