深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202201-202201] [清除筛选条件]
当前共找到 562 篇文献,本页显示第 301 - 320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
301 2024-09-04
Deep learning assessment of left ventricular hypertrophy based on electrocardiogram
2022, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本研究构建了一个基于卷积神经网络-长短期记忆(CNN-LSTM)的深度学习模型,用于通过12导联心电图快速有效地检测左心室肥厚(LVH) 本研究首次将深度学习技术应用于LVH的诊断,提高了诊断的敏感性 NA 旨在通过深度学习技术提高左心室肥厚的诊断效率和准确性 左心室肥厚(LVH)的诊断 机器学习 心血管疾病 深度学习 CNN-LSTM 心电图 共分析了1,863名患者的超声心动图和心电图数据,其中训练集1,120例,验证集371例,测试集1 372例,内部测试集2 453例
302 2024-09-04
Artificial intelligence for topic modelling in Hindu philosophy: Mapping themes between the Upanishads and the Bhagavad Gita
2022, PloS one IF:2.9Q1
研究论文 本文使用BERT等高级语言模型对《奥义书》和《薄伽梵歌》进行主题建模,并分析两者之间的主题相似性和重叠性 首次使用基于深度学习的语言模型对《奥义书》和《薄伽梵歌》进行主题建模和分析 NA 探索《奥义书》和《薄伽梵歌》之间的主题相似性和重叠性 《奥义书》和《薄伽梵歌》 自然语言处理 NA BERT BERT 文本 《奥义书》和《薄伽梵歌》的选定文本
303 2024-09-04
Apache Spark and Deep Learning Models for High-Performance Network Intrusion Detection Using CSE-CIC-IDS2018
2022, Computational intelligence and neuroscience
研究论文 本文提出使用Apache Spark和深度学习模型(CNN和LSTM)结合CSE-CIC-IDS2018数据集进行高性能网络入侵检测 采用随机森林进行特征选择,使用过采样和欠采样技术处理数据不平衡问题,以及Apache Spark模型在所有类别中达到100%的准确率 NA 提高网络入侵检测系统的性能 网络入侵检测 机器学习 NA 深度学习 CNN, LSTM 数据集 CSE-CIC-IDS2018数据集包含14种攻击类型,84个特征中的19个被选为重要特征
304 2024-09-04
Clinical and Biological Significances of a Ferroptosis-Related Gene Signature in Lung Cancer Based on Deep Learning
2022, Computational and mathematical methods in medicine
研究论文 本研究探讨了长链酰基辅酶A合成酶4(ACSL4)在非小细胞肺癌(NSCLC)中的表达及其与铁死亡的关系,并利用深度学习技术进行分析 首次揭示了ACSL4在NSCLC中的表达水平及其作为诊断和预后生物标志物的潜力,并探讨了其在铁死亡中的作用机制 研究仅限于NSCLC,且依赖于数据库和样本分析,未涉及临床试验 探究ACSL4在NSCLC中的临床和生物学意义及其作为潜在治疗靶点的可能性 ACSL4在NSCLC中的表达及其与铁死亡的关系 数字病理学 肺癌 深度学习 NA mRNA表达数据 人类NSCLC样本
305 2024-09-04
Synthetic Epileptic Brain Activities with TripleGAN
2022, Computational and mathematical methods in medicine
research paper 本研究提出了一种利用三重生成对抗网络(TripleGAN)实现脑电图(EEG)癫痫识别的方法 使用TripleGAN在时间域、频率域和时频域分别处理EEG数据,提高了癫痫分类的准确性、敏感性和特异性 NA 实现基于脑电图的癫痫自动检测 癫痫患者的脑电图数据 machine learning 癫痫 TripleGAN GAN EEG 使用了CHB-MIT数据集
306 2024-09-04
Hybrid of deep learning and exponential smoothing for enhancing crime forecasting accuracy
2022, PloS one IF:2.9Q1
研究论文 本研究提出了一种结合双向长短期记忆网络(Bi-LSTM)和指数平滑(ES)的混合模型,用于提高犯罪预测的准确性 该研究首次将Bi-LSTM与ES结合,用于犯罪预测,并显示出比传统季节性自回归积分移动平均模型(SARIMA)更高的预测准确性 研究使用的数据仅限于2010-2017年纽约市的犯罪数据,可能限制了模型的泛化能力 提高犯罪预测的准确性,帮助执法机构预防和控制犯罪 犯罪预测 机器学习 NA 双向长短期记忆网络(Bi-LSTM),指数平滑(ES) Bi-LSTM 时间序列数据 2010-2017年纽约市的犯罪数据
307 2024-09-04
Generative Adversarial Network Combined with SE-ResNet and Dilated Inception Block for Segmenting Retinal Vessels
2022, Computational intelligence and neuroscience
研究论文 本研究开发了一种基于生成对抗网络(GAN)的准确方法,针对视网膜分割图像中微血管分割的当前不连续性问题 提出了一种改进的GAN,结合SE-ResNet和扩张的inception块,用于视网膜血管分割(SAD-GAN),改进了生成器和判别器,引入了注意力机制 NA 提高视网膜血管分割的准确性 视网膜血管 计算机视觉 NA 生成对抗网络(GAN) GAN 图像 在DRIVE和CHASE_DB1数据集上进行了测试
308 2024-09-04
Geometric deep learning reveals a structuro-temporal understanding of healthy and pathologic brain aging
2022, Frontiers in aging neuroscience IF:4.1Q2
研究论文 本文通过几何深度学习方法,探索健康和病理性大脑老化在结构和时间上的理解 本文首次将深度学习与表面分析结合,研究个体结构层面的大脑老化过程,并假设病理性老化不会均匀影响个体结构的老化过程 NA 探索不同大脑结构在健康和病理性老化中的动态和相互关系 大脑结构的老化过程 计算机视觉 神经退行性疾病 MRI 深度学习网络 图像 共收集了来自17,440名独特受试者的26,276个T1加权MRI数据
309 2024-09-04
Exploration of the Application Effect of the Darongtong Course Model Based on Deep Learning Enhancement in Nursing
2022, Contrast media & molecular imaging
研究论文 本研究探讨了基于深度学习增强的大融通课程模型在护理教学中的应用效果 采用基于深度学习增强的大融通教学模式,不仅加深学生对理论知识的理解,还提高了临床技能和沟通能力 NA 探索基于深度学习增强的大融通课程模型在护理教学中的应用效果 学校中的500名学生 NA NA 深度学习 NA NA 500名学生
310 2024-09-04
Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning
2022, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文介绍了一种名为RESEPT的深度学习框架,用于从空间转录组学数据中表征和可视化组织结构 RESEPT能够通过空间保留的图神经网络学习三维嵌入,并将嵌入映射到RGB图像中进行可视化,从而准确推断和可视化组织结构 NA 开发一种新的计算框架,用于从空间转录组学数据中定义和可视化人类组织病理结构 人类和鼠类皮质组织,以及阿尔茨海默病和胶质母细胞瘤样本 机器学习 NA 空间转录组学 图神经网络和卷积神经网络 基因表达数据 基于10x Genomics Visium空间转录组学数据集的人类和鼠类皮质组织样本,以及内部AD样本和胶质母细胞瘤样本
311 2024-09-04
Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images
2022, Polish journal of radiology IF:0.9Q4
研究论文 本文提出了一种基于深度学习的自动化工具,用于从胸部CT图像中分割COVID-19病变区域,并评估其性能 使用U-Net、U-Net++和Res-Unet三种深度学习网络进行COVID-19病变区域的自动分割 需要进一步研究以评估所提出模型在COVID-19语义分割中的临床性能和鲁棒性 开发一种高效的工具,用于从胸部CT图像中自动分割COVID-19病变区域 COVID-19病变区域 计算机视觉 COVID-19 深度学习 U-Net, U-Net++, Res-Unet 图像 2112张COVID-19胸部CT图像
312 2024-09-02
AI-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models
2022, Journal of biotechnology and biomedicine
综述 本文综述了人工智能在中枢神经系统肿瘤影像分析中的应用,包括传统机器学习、深度学习和混合模型 探讨了机器学习、深度学习和混合模型在AI驱动影像分析中的结合使用,可能产生更优结果 面临数据集有限、影像变化随时间变异及分析方法多样性的挑战 标准化报告、减少偏差、加速管理并改善治疗结果 中枢神经系统肿瘤的影像分析 机器学习 中枢神经系统肿瘤 NA 机器学习(ML)、深度学习(DL)、混合模型 影像 NA
313 2024-09-02
A statistical and deep learning-based daily infected count prediction system for the coronavirus pandemic
2022, Evolutionary intelligence IF:2.3Q3
研究论文 本文提出了一种基于数据分析的预测系统,用于预测新冠病毒大流行期间的每日感染人数 使用易感感染恢复(SIR)模型,实现了99.82%的预测准确率,并预测了印度每日新增COVID病例的四种最可能情况 传统的统计方法在特定国家有限人口的情况下效率不高 帮助政府规划未来行动,并帮助医疗服务更好地准备应对未来情况 新冠病毒大流行期间的每日感染人数 机器学习 NA 数据分析 SIR模型 NA NA
314 2024-09-02
Deep learning and evolutionary intelligence with fusion-based feature extraction for detection of COVID-19 from chest X-ray images
2022, Multimedia systems IF:3.5Q1
研究论文 本文提出了一种基于融合特征提取的深度学习和进化智能模型,用于从胸部X光图像中检测COVID-19感染 该模型结合了灰度共生矩阵(GLCM)、灰度游程长度矩阵(GLRM)和局部二值模式(LBP)进行特征提取,并使用海豚群算法(SSA)选择最优特征子集,最后通过人工神经网络(ANN)进行分类 NA 开发一种高效准确的COVID-19诊断模型 COVID-19患者的胸部X光图像 计算机视觉 COVID-19 灰度共生矩阵(GLCM)、灰度游程长度矩阵(GLRM)、局部二值模式(LBP) 人工神经网络(ANN) 图像 使用胸部X光图像数据集进行评估
315 2024-09-02
Self-assessment and deep learning-based coronavirus detection and medical diagnosis systems for healthcare
2022, Multimedia systems IF:3.5Q1
研究论文 本文提出了一种基于深度学习的医疗图像分类方法DLM-COVID-19,用于COVID-19患者的检测,并开发了一个移动应用进行自我评估和在线诊断 提出了DLM-COVID-19模型,该模型在敏感性、特异性和准确性方面优于现有算法,并开发了一个结合自我评估和医学专业知识的移动应用 未提及具体限制 提高COVID-19的医疗图像分类和优化诊断,以及开发一个帮助预防病毒传播的移动应用 COVID-19患者和医疗图像分类 机器学习 肺部疾病 深度学习 CNN 图像 未提及具体样本数量
316 2024-09-02
A comprehensive Benchmark for fake news detection
2022, Journal of intelligent information systems IF:2.3Q3
研究论文 本文提供了一个基准框架,用于分析和讨论用于假新闻检测的最广泛使用和有前景的机器/深度学习技术,并利用了与文献中提出的不同的特征组合。 本文通过实验展示了在有限内容信息的情况下,不同方法在准确性和效率方面的优势和缺点。 文章中提到的信息关于新闻传播的可用性是有限的。 开发更准确的假新闻检测策略,特别是早期检测。 假新闻检测的机器/深度学习技术及其特征组合。 自然语言处理 NA 机器/深度学习 NA 文本 使用了广泛使用的真实世界数据集
317 2024-09-02
A deep learning-based framework for detecting COVID-19 patients using chest X-rays
2022, Multimedia systems IF:3.5Q1
研究论文 本文提出了一种基于深度学习的系统,用于从胸部X光图像中可靠地检测COVID-19患者 提出了一种轻量级的浅层卷积神经网络架构,具有高准确率、高灵敏度和高特异性 NA 快速开发一种高效的轻量级CNN架构,用于检测COVID-19感染患者 COVID-19患者的胸部X光图像 计算机视觉 COVID-19 深度学习 CNN 图像 2,541张胸部X光图像
318 2024-09-02
How deep learning is empowering semantic segmentation: Traditional and deep learning techniques for semantic segmentation: A comparison
2022, Multimedia tools and applications IF:3.0Q2
review 本文比较了传统和深度学习技术在语义分割领域的应用,并探讨了深度学习如何提升语义分割的效率和准确性 本文通过研究约120篇相关论文,总结了深度学习在解决语义分割关键问题上的优势 NA 比较传统和深度学习技术在语义分割中的应用,并评估深度学习在此领域的改进 语义分割技术及其在图像和视频处理中的应用 computer vision NA deep learning NA image 约120篇相关研究论文
319 2024-09-02
COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning
2022, Multimedia tools and applications IF:3.0Q2
研究论文 本文研究使用深度卷积神经网络在大规模数据集中有效检测COVID-19病毒性肺炎的影像特征 提出了一种名为COVID-CXNet的模型,该模型能够基于相关且有意义的特征精确地检测和定位新冠病毒性肺炎 NA 开发一种全自动且强大的COVID-19检测系统 COVID-19病毒性肺炎的影像特征 计算机视觉 COVID-19 深度学习 CNN 图像 大量胸部X光图像
320 2024-09-02
Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal
2022, Multimedia tools and applications IF:3.0Q2
研究论文 本文提出了一种基于优化可变形卷积网络的方法,用于从脑电图信号中检测和减轻眼部伪影 使用优化可变形卷积网络(DCN)和多种信号处理技术(如离散小波变换、Pisarenko谐波分解、主成分分析和独立成分分析)来提高眼部伪影检测和减轻的效率 NA 开发一种新的基于深度学习的眼部伪影检测和预防模型,以提高脑电图信号分析的效率 脑电图信号中的眼部伪影 机器学习 NA 离散小波变换(DWT)、Pisarenko谐波分解、主成分分析(PCA)、独立成分分析(ICA)、可变形卷积网络(DCN) 可变形卷积网络(DCN) 脑电图信号 来自不同受试者的脑电图数据
回到顶部