深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202201-202201] [清除筛选条件]
当前共找到 551 篇文献,本页显示第 481 - 500 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
481 2024-08-25
An Improved COVID-19 Detection using GAN-Based Data Augmentation and Novel QuNet-Based Classification
2022, BioMed research international IF:2.6Q3
研究论文 本文提出了一种改进的COVID-19检测方法,使用基于GAN的数据增强和新型QuNet分类器 引入了基于GAN的数据增强方法和新型卷积神经网络QuNet,提高了COVID-19检测的准确性 公开可用数据集的不足导致模型过拟合问题 改进COVID-19的检测方法,提高诊断准确性 COVID-19病毒的X射线图像 机器学习 COVID-19 GAN CNN 图像 使用了四种现有的深度卷积网络(DenseNet-121、InceptionV3、Xception和ResNet101)以及新提出的QuNet网络进行比较分析
482 2024-08-25
An Efficient Stacked Deep Transfer Learning Model for Automated Diagnosis of Lyme Disease
2022, Computational intelligence and neuroscience
研究论文 本文提出了一种高效的堆叠深度迁移学习模型,用于自动化诊断莱姆病 该模型通过使用二阶边缘基色恒常性预处理方法和数据增强技术,有效解决了过拟合和颜色变化问题 NA 提高莱姆病的诊断准确性 莱姆病与其他感染的区分 机器学习 莱姆病 深度学习 AlexNet 图像 使用了5折交叉验证
483 2024-08-25
Classification and Detection of Autism Spectrum Disorder Based on Deep Learning Algorithms
2022, Computational intelligence and neuroscience
研究论文 本研究利用深度学习算法对自闭症谱系障碍进行分类和检测 提出了一种基于社交媒体数据和人脸识别的自闭症谱系障碍检测系统 需要精确的技术来提取和生成正确的人脸特征模式 帮助社区和精神科医生通过面部特征实验性地检测自闭症 自闭症谱系障碍儿童的面部特征 机器学习 精神疾病 深度学习 卷积神经网络 图像 2,940张人脸图像
484 2024-08-25
Ensemble Deep Learning and Internet of Things-Based Automated COVID-19 Diagnosis Framework
2022, Contrast media & molecular imaging
研究论文 本文提出了一种基于集成深度学习和物联网(IoT)的自动化COVID-19诊断框架,通过集成三个预训练的深度学习模型和利用医疗IoT设备收集的CT扫描图像进行自动诊断 该框架通过集成多个深度学习模型和利用IoT技术,提高了COVID-19诊断的准确性和效率 NA 开发一种高效的自动化COVID-19诊断方法 COVID-19疑似病例的诊断 机器学习 COVID-19 深度学习 集成模型 图像 四类数据集
485 2024-08-25
Deep Learning Neural Network Prediction System Enhanced with Best Window Size in Sliding Window Algorithm for Predicting Domestic Power Consumption in a Residential Building
2022, Computational intelligence and neuroscience
研究论文 本文通过深度学习方法(LSTM和CNN)分析并预测单个住宅建筑的家用电力消耗,引入了“最佳N窗口大小”特征,以识别过去数据中的可靠时间段,从而优化预测模型。 提出了“最佳N窗口大小”特征,用于识别过去数据中的可靠时间段,以改进滑动窗口算法,提高预测模型的准确性。 NA 分析和预测住宅建筑的家用电力消耗,以提高能源利用效率。 单个住宅建筑的家用电力消耗。 机器学习 NA 深度学习 LSTM和CNN 时间序列数据 NA
486 2024-08-25
Deep learning for microscopic examination of protozoan parasites
2022, Computational and structural biotechnology journal IF:4.4Q2
review 本文综述了深度学习在原生动物寄生虫显微检查领域的进展 深度学习在生物医学图像分析中表现出卓越性能,特别是在寄生虫诊断方面 深度学习在原生动物寄生虫诊断中仍面临挑战和未来趋势 总结深度学习在原生动物寄生虫显微检查领域的进展及未来趋势 原生动物寄生虫的显微图像 computer vision NA deep learning CNN image 公开可用的原生动物寄生虫显微图像数据集
487 2024-08-24
Morphological components detection for super-depth-of-field bio-micrograph based on deep learning
2022-Jan-29, Microscopy (Oxford, England)
研究论文 本文提出了一种基于Retinanet模型的超景深生物显微图像中的细胞目标检测算法 与主流算法相比,该算法在平均精度均值(mAP)指标上有显著提升,实验中白带样本和粪便样本的mAP分别达到83.1%和88.1% NA 提高超景深系统中显微图像细胞分类和定位的效率与准确性 超景深生物显微图像中的细胞 计算机视觉 NA 深度学习 Retinanet 图像 白带样本和粪便样本
488 2024-08-24
Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review
2022, SN computer science
综述 本文综述了利用人工智能技术对社交媒体数据进行情感分析以检测抑郁情绪的研究 采用多类分类与深度学习算法提高了情感分析的精确度 NA 探讨如何利用社交媒体数据进行情感分析以检测抑郁情绪 社交媒体中的文本、表情符号和表情等数据 自然语言处理 NA 机器学习和深度学习技术 深度学习算法 文本 NA
489 2024-08-23
Accuracy of Deep Learning Echocardiographic View Classification in Patients with Congenital or Structural Heart Disease: Importance of Specific Datasets
2022-Jan-28, Journal of clinical medicine IF:3.0Q1
研究论文 本研究验证了在先天性或结构性心脏病患者中使用卷积神经网络进行超声心动图视图分类的准确性,并训练了一个专门针对此类患者的新的卷积神经网络。 本研究首次验证了神经网络在先天性或结构性心脏病患者中的视图分类,并展示了专门训练的模型在此特定群体中显著提高的准确性。 研究仅限于先天性或结构性心脏病患者,可能不适用于其他心脏疾病患者。 验证和提高神经网络在先天性或结构性心脏病患者中超声心动图视图分类的准确性。 先天性或结构性心脏病患者及正常对照组的超声心动图图像。 机器学习 先天性心脏病 卷积神经网络 CNN 图像 9793个图像文件来自262名先天性或结构性心脏病患者和62名正常对照组
490 2024-08-23
Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins
2022-01-25, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文介绍了一种基于深度学习的高速蛋白质结构预测方法,该方法通过简化预处理步骤并直接从深度神经网络输出主链坐标,实现了对未表征蛋白质的高通量探索。 该方法通过使用三个循环网络和一系列残差卷积层,显著减少了目标多序列比对(MSA)的预处理需求,同时提高了预测速度和准确性。 NA 开发一种高效的蛋白质结构预测方法,以实现对大量未表征蛋白质区域的三维建模。 未表征的蛋白质区域和Pfam家族中的蛋白质。 机器学习 NA 深度学习 深度神经网络 序列数据 超过130万个未表征的蛋白质区域和5000多个Pfam家族的蛋白质。
491 2024-08-23
FaceMask: A New Image Dataset for the Automated Identification of People Wearing Masks in the Wild
2022-Jan-24, Sensors (Basel, Switzerland)
研究论文 本文介绍了一个新的公开可用注释图像数据库FaceMask,用于自动识别佩戴口罩的人群 提出了一个包含佩戴和不佩戴口罩人群图像的公开数据库,并测试了深度学习检测器在该数据集上的性能 NA 旨在克服现有数据集不足的问题,促进口罩佩戴识别领域的研究进展 研究对象为佩戴和不佩戴口罩的人群图像 计算机视觉 NA 图像处理技术与深度学习 YOLO网络 图像与视频 包含不同环境和情境下佩戴和不佩戴口罩的人群图像
492 2024-08-23
Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique
2022-Jan-23, International journal of molecular sciences IF:4.9Q2
research paper 本文提出了一种深度学习方法Deep-4mCGP,用于预测Geobacter pickeringii中的4mC位点,使用基于相关性的特征选择技术 该研究通过融合二进制和-mer组成的特征描述符,并采用相关性和梯度提升决策树(GBDT)的增量特征选择(IFS)方法优化特征,提高了预测4mC位点的准确性 NA 建立一个稳健的深度学习模型,用于识别Geobacter pickeringii中的4mC位点 Geobacter pickeringii中的4mC位点 machine learning NA correlation-based feature selection technique 1D convolutional neural network (CNN) DNA sequence NA
493 2024-08-23
ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning
2022-Jan-22, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于云集成的Android应用ABCanDroid,利用迁移学习进行非侵入式早期乳腺癌检测 本文采用卷积神经网络(CNN)结合迁移学习的方法,提高了乳腺癌早期检测的效率和准确性 NA 提高乳腺癌早期检测的效率和准确性 乳腺癌检测 机器学习 乳腺癌 迁移学习 CNN 图像 使用ImageNet数据集
494 2024-08-23
An Intelligent System for Early Recognition of Alzheimer's Disease Using Neuroimaging
2022-Jan-19, Sensors (Basel, Switzerland)
研究论文 本文提出了一种使用神经影像学和深度学习技术早期识别阿尔茨海默病(AD)的智能系统 通过使用随机串联的深度特征从两个预训练模型中学习脑功能网络的深度特征,解决了现有算法无法识别MCI患者脑功能网络中功能连接变化的问题 NA 旨在早期检测轻度认知障碍(MCI),以防止AD的进一步发展 阿尔茨海默病(AD)和轻度认知障碍(MCI) 机器学习 阿尔茨海默病 磁共振成像(MRI) ResNet18 和 DenseNet201 图像 未具体说明样本数量
495 2024-08-23
Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer
2022-Jan-15, World journal of gastrointestinal oncology IF:2.5Q3
综述 本文综述了人工智能技术在结直肠癌诊断、治疗和预后中的应用 探讨了人工智能技术在结直肠癌领域的应用前景 目前人工智能技术主要用于图像识别和辅助分析,缺乏与患者的深入交流 研究人工智能技术在结直肠癌管理中的应用 结直肠癌的诊断、治疗和预后 机器学习 结直肠癌 NA NA 图像 NA
496 2024-08-23
Fusion-Based Deep Learning with Nature-Inspired Algorithm for Intracerebral Haemorrhage Diagnosis
2022, Journal of healthcare engineering
研究论文 本文提出了一种基于融合的深度学习与自然启发算法的自动化脑内出血诊断方法 采用融合基于胶囊网络和EfficientNet的特征提取模型,并利用鹿狩猎优化算法进行超参数优化 NA 提高脑内出血诊断的效率和准确性 脑内出血的自动化诊断 机器学习 脑血管疾病 深度学习 CapsNet, DenseNet 图像 使用基准脑内出血数据集进行模拟
497 2024-08-23
Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences
2022, PloS one IF:2.9Q1
研究论文 本文研究了一种基于深度学习的胚胎选择模型,该模型使用时间序列图像来评估和选择体外受精中最有活力的胚胎 该模型能够跨不同患者年龄和临床条件进行泛化,并在独立测试集中表现出高准确性 模型在新的诊所中的泛化性能仍有待进一步验证 探索基于人工智能的胚胎选择模型在不同临床条件下的性能和泛化能力 胚胎选择模型在不同患者年龄、受精方法、孵化时间和移植协议下的表现 机器学习 NA 深度学习 深度学习模型 图像 115,832个胚胎,其中14,644个为已知植入数据的胚胎
498 2024-08-23
BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning
2022 Jan-Dec, mAbs IF:5.6Q1
研究论文 本文介绍了BioPhi平台,该平台利用深度学习和自然抗体库进行抗体设计、人源化和人源性评估 BioPhi平台引入了新的方法Sapiens和OASis,分别用于抗体人源化和人源性评估,这些方法在规模和效果上与人类专家相当,并提供了更高的多样性、粒度和可解释性 NA 开发一个自动化平台,用于抗体设计、人源化和人源性评估,以加速治疗性抗体的发现 抗体设计、人源化和人源性评估 机器学习 NA 深度学习 语言模型 序列数据 177个抗体用于人源化基准测试
499 2024-08-23
Application of Artificial Intelligence Nuclear Medicine Automated Images Based on Deep Learning in Tumor Diagnosis
2022, Journal of healthcare engineering
研究论文 本文研究了基于深度学习的人工智能核医学自动图像在肿瘤诊断中的应用,特别是通过改进分割算法的准确性来提高肿瘤图像的分割效果 提出了一种基于边界约束的主动轮廓模型和超像素边界感知卷积网络,以实现自动CT切割算法,从而更准确地分割肿瘤图像 文章未提及具体的局限性 研究基于深度学习的人工智能核医学自动图像在肿瘤诊断中的应用 研究如何从边界识别和形状可变适应能力的角度提高分割算法的准确性 计算机视觉 肿瘤 深度学习 CNN 图像 未具体说明样本数量
500 2024-08-23
Deep Learning-Based Analytic Models Based on Flow-Volume Curves for Identifying Ventilatory Patterns
2022, Frontiers in physiology IF:3.2Q2
研究论文 本研究旨在探讨基于流量-容积曲线深度学习分析模型在识别呼吸模式中的准确性,并将其性能与肺功能实验室的医生进行比较 使用深度学习模型VGG13基于流量-容积曲线高精度识别呼吸模式,无需其他参数 NA 探索基于流量-容积曲线的深度学习模型在识别呼吸模式中的准确性 呼吸模式的识别 机器学习 NA 深度学习 VGG13 流量-容积曲线 18,909名受试者
回到顶部