深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202201-202201] [清除筛选条件]
当前共找到 551 篇文献,本页显示第 541 - 551 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
541 2024-08-05
A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection
2022, Computational intelligence and neuroscience
研究论文 本文提出了一种新的混合深度学习模型用于转移性癌症的检测 推出了混合的AlexNet-门控递归单元模型(AlexNet-GRU),并在乳腺癌淋巴结检测中表现出色 研究未提及模型在实际临床环境中的应用效果 旨在提高癌症的检测效率并减少病理学家在诊断过程中的错误 乳腺癌淋巴结样本 机器学习 乳腺癌 深度学习 AlexNet-GRU 图像 使用了Kaggle(PCam)数据集中的淋巴结癌症样本
542 2024-08-05
Design and implementation of real-time object detection system based on single-shoot detector and OpenCV
2022, Frontiers in psychology IF:2.6Q2
研究论文 本研究设计并实施了一种实时目标检测和识别系统,使用单次检测器(SSD)算法和深度学习技术 提出了一种高准确率和高效率的实时目标检测系统,并研究了多种预训练模型在不同数据集上的表现 系统需在合理的设备上运行,且对数据集的选择和模型的准确性依赖较大 开发并调查一种基于深度学习和神经网络的实时目标检测和识别系统 使用开放数据集评估SSD算法的性能及准确性 计算机视觉 NA 深度学习 SSD 图像 使用MS Common Objects in Context (COCO)、PASCAL VOC和Kitti等开放数据集进行评估
543 2024-08-05
Deep learning automates detection of wall motion abnormalities via measurement of longitudinal strain from ECG-gated CT images
2022, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本文展示了一种深度学习框架能够自动和准确地测量纵向应变,以检测心壁运动异常 提出了一种新的自动化方法,通过深度学习进行左心室血池分割和纵向成像平面的描绘 样本数量有限且仅在训练和测试队列中评估 研究使用深度学习框架自动测量纵向应变以检测心壁运动异常的能力 分析了100个临床cineCT研究中心脏的AHA段是否存在运动异常 数字病理学 心血管疾病 深度学习 卷积神经网络 CT图像 100个临床cineCT研究
544 2024-08-05
Detection of left ventricular wall motion abnormalities from volume rendering of 4DCT cardiac angiograms using deep learning
2022, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本研究开发并评估了利用深度学习从动态体积渲染的4DCT心脏血管造影中检测左心室壁运动异常的能力 提出了一种基于深度学习的方案,通过动态体积渲染视频提高左心室壁运动异常的检测准确性 研究仅依赖于回顾性评估,样本来源于单一中心,可能存在一定的选择偏倚 研究旨在提高心血管疾病患者左心室壁运动异常的检测准确性 研究对象为343个ECG门控的心脏4DCT研究 计算机视觉 心血管疾病 4DCT 深度学习 (DL),包括Inception网络和长短期记忆网络 (LSTM) 视频 343个心脏4DCT研究
545 2024-08-05
MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging
2022, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本文提出了一个用于3D超声心动图左心室分割的机器学习数据集,并使用特定于受试者的心脏磁共振成像标签进行标注 引入了一个大规模的3D超声心动图数据集,利用心脏磁共振成像的高分辨率标签解决传统手工标注中的专家一致性问题 样本量虽然较大,但依然排除了10个受试者,可能影响研究的代表性 开发用于3D超声心动图分析的自动化方法,并验证所构建数据集的有效性 该研究对象是143名人类受试者的3D超声心动图图像,包括健康对照组与心脏疾病患者 机器学习 心血管疾病 3D超声心动图 深度学习网络 图像 536个3D超声心动图像,来自143名受试者
546 2024-08-05
Machine learning based multi-modal prediction of future decline toward Alzheimer's disease: An empirical study
2022, PloS one IF:2.9Q1
研究论文 该论文进行了一项实证研究,以多模态数据预测个体未来阿尔茨海默病的发展轨迹 提出了一种能够处理不同未来时间范围和异构数据的机器学习策略 预测认知正常个体的未来衰退比轻度认知障碍个体更具挑战性 早期识别阿尔茨海默病高风险个体以促进有效治疗和预防 个体未来阿尔茨海默病发展轨迹的预测 机器学习 阿尔茨海默病 深度学习 线性和非线性模型 多模态数据 NA
547 2024-08-07
Predicting post-contrast information from contrast agent free cardiac MRI using machine learning: Challenges and methods
2022, Frontiers in cardiovascular medicine IF:2.8Q2
研究论文 本研究旨在通过分析对比剂前后的心脏磁共振成像(CMR)图像,利用对比剂前的信息预测对比剂后的信息,并提出相应的方法和挑战。 本研究首次尝试使用深度学习(DL)、支持向量机(SVM)和决策树(DT)方法,从无对比剂的心脏磁共振成像中预测对比剂后的信息。 初步结果显示性能一般,这一研究领域仍存在许多未解决的问题。 研究目的是通过对比剂前的心脏磁共振成像预测对比剂后的信息。 研究对象包括272例回顾性选择的心脏磁共振成像研究,其中108例为心肌梗死(MI),164例为健康对照。 机器学习 心血管疾病 深度学习 UNet和ResNet50 图像 272例心脏磁共振成像研究,包括108例心肌梗死和164例健康对照,共使用722对电影短轴(SAX)图像和分割掩模进行实验。
548 2024-08-07
Identifying Barriers to Post-Acute Care Referral and Characterizing Negative Patient Preferences Among Hospitalized Older Adults Using Natural Language Processing
2022, AMIA ... Annual Symposium proceedings. AMIA Symposium
PMID:37128417
研究论文 本研究利用自然语言处理技术识别住院老年患者接受急性后护理的障碍,并分析患者的负面偏好 开发了一种自然语言处理分类器,用于识别最高价值的急性后护理障碍类别,即患者的负面偏好,并比较了多种机器学习模型,包括深度学习模型 研究样本仅包括594份急性护理笔记,来自100名患者,可能影响结果的普遍性 旨在检测住院老年患者接受急性后护理的常见障碍 住院老年患者的临床笔记 自然语言处理 NA 自然语言处理 深度学习模型 文本 594份急性护理笔记,来自100名患者
549 2024-08-07
Displacement detection with sub-pixel accuracy and high spatial resolution using deep learning
2022-Jan, Journal of medical ultrasonics (2001)
研究论文 本研究旨在使用超声诊断设备实现二维和亚像素位移的高空间分辨率检测 本研究开发了一种利用超声图像和输出位移分布的深度学习网络,通过修改FlowNet2网络结构并使用超声图像模拟开发训练数据集,实现了高空间分辨率和亚像素位移检测 NA 实现二维和亚像素位移的高空间分辨率检测 使用超声诊断设备进行位移检测 机器学习 NA 深度学习 FlowNet2 图像 使用了模拟超声图像和肝脏超声图像进行评估
550 2024-08-07
Using Deep Learning Radiomics to Distinguish Cognitively Normal Adults at Risk of Alzheimer's Disease From Normal Control: An Exploratory Study Based on Structural MRI
2022, Frontiers in medicine IF:3.1Q1
研究论文 本研究提出了一种基于结构MRI图像的深度学习放射组学方法,用于区分认知正常但有阿尔茨海默病风险的成年人与正常对照组 本研究首次提出了一种深度学习放射组学方法,通过结构MRI图像区分阿尔茨海默病风险个体与正常对照组 本研究仅基于ADNI数据库的数据进行,样本量有限,需要进一步在更广泛的人群中验证 开发一种新的方法来区分认知正常但有阿尔茨海默病风险的个体与正常对照组 认知正常但有阿尔茨海默病风险的成年人与正常对照组 机器学习 阿尔茨海默病 MRI 深度学习放射组学 图像 417名认知正常的成年人,分为181名阿尔茨海默病风险个体和236名正常对照组
551 2024-08-07
Predicting diagnosis 4 years prior to Alzheimer's disease incident
2022, NeuroImage. Clinical
研究论文 本研究利用深度学习纵向模型,即图卷积和循环神经网络(graph-CNN-RNN),对阿尔茨海默病(AD)的脑结构MRI扫描进行预测分析 首次采用graph-CNN-RNN模型对AD进行长达4年的早期诊断预测,并展示了脑形态学从预测到明显AD阶段的定量轨迹 NA 旨在利用深度学习技术提前预测阿尔茨海默病的发生 阿尔茨海默病的早期诊断和预测 机器学习 阿尔茨海默病 MRI扫描 graph-CNN-RNN 图像 训练集包含1559个样本,验证集包含930个样本
回到顶部