深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202201-202212] [清除筛选条件]
当前共找到 1726 篇文献,本页显示第 21 - 40 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2025-03-23
With or without human interference for precise age estimation based on machine learning?
2022-May, International journal of legal medicine IF:2.2Q1
研究论文 本文探讨了在基于机器学习的精确年龄估计中,有无人工干预对特征提取的影响 首次在同一图像分析任务中比较了人工干预和自主提取两种特征提取方法的效果 ADSE模型在牙龄估计中的准确性不理想,MAE仅比手动方法低0.04年 比较人工干预和自主提取特征在牙龄估计中的性能差异 牙龄估计 计算机视觉 NA 卷积神经网络(CNN) ADSE模型和ADAE模型 图像 NA
22 2025-03-22
Nuclear morphology is a deep learning biomarker of cellular senescence
2022-08, Nature aging IF:17.0Q1
研究论文 本文利用神经网络从人类成纤维细胞的核形态预测细胞衰老,准确率高达95%,并研究了小鼠星形胶质细胞、小鼠神经元和培养中的早衰成纤维细胞 首次证明核形态可以作为跨组织和物种的细胞衰老深度学习预测指标,并与人类健康结果相关联 研究主要基于体外培养细胞和小鼠组织,需要进一步验证在人类组织中的普适性 探索细胞衰老的深度学习预测指标及其与健康结果的关系 人类成纤维细胞、小鼠星形胶质细胞、小鼠神经元、早衰成纤维细胞、H&E染色的小鼠肝组织和人类皮肤活检样本 数字病理学 老年疾病 深度学习 神经网络 图像 未明确样本数量,涉及多种细胞类型和组织样本
23 2025-03-21
Dimensionally consistent learning with Buckingham Pi
2022-Dec, Nature computational science IF:12.0Q1
研究论文 本文提出了一种自动化方法,利用测量数据的对称性和自相似结构,通过Buckingham Pi定理发现最佳降维的无量纲群 开发了三种数据驱动技术,结合Buckingham Pi定理作为约束,包括约束优化问题、深度学习算法(BuckiNet)和基于稀疏识别非线性动力学的技术 NA 探索在没有控制方程的情况下,通过维度分析提取物理系统的洞察和对称性 物理系统中的测量变量和参数 机器学习 NA Buckingham Pi定理,深度学习,稀疏识别非线性动力学 深度学习算法(BuckiNet) 测量数据 NA
24 2025-03-21
A universal graph deep learning interatomic potential for the periodic table
2022-Nov, Nature computational science IF:12.0Q1
研究论文 本文介绍了一种基于图神经网络的通用原子间势能模型M3GNet,用于材料的结构弛豫、动态模拟和性质预测 M3GNet模型通过结合三体相互作用,能够广泛应用于不同化学空间中的材料,且训练数据来源于Materials Project过去十年的大规模结构弛豫数据库 NA 开发一种通用的原子间势能模型,以加速可合成材料的发现 材料的结构弛豫、动态模拟和性质预测 机器学习 NA 图神经网络 M3GNet 结构弛豫数据 约180万种材料,筛选自3100万种假设晶体结构
25 2025-03-21
Challenges and opportunities in quantum machine learning
2022-Sep, Nature computational science IF:12.0Q1
综述 本文探讨了量子机器学习在加速数据分析方面的潜力,特别是在量子数据领域,并回顾了当前的方法和应用 强调了量子机器学习与经典机器学习之间的差异,特别是量子神经网络和量子深度学习 量子机器学习模型的可训练性仍存在挑战 探讨量子机器学习在量子材料、生物化学和高能物理等领域的应用潜力 量子数据及其在多个科学领域的应用 量子机器学习 NA NA 量子神经网络, 量子深度学习 量子数据 NA
26 2025-03-14
The impact of trade and financial expansion on volatility of real exchange rate
2022, PloS one IF:2.9Q1
研究论文 本文研究贸易和金融开放对实际汇率波动的影响,并通过实证分析提供减少实际汇率波动的参考 结合物联网金融的创新商业模式,利用深度学习进行金融数据分析,探讨贸易和金融开放对实际汇率波动的影响 研究仅基于45个主要国家的面板数据,可能无法全面反映全球情况 探讨贸易和金融开放对实际汇率波动的影响,为减少实际汇率波动提供参考 45个主要国家的贸易和金融开放数据 金融数据分析 NA 深度学习(DL) NA 面板数据 45个主要国家的数据
27 2025-03-11
Letter re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review: Label-free diagnostic technique to differentiate cancer cells from healthy cells
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA
28 2025-03-11
Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA
29 2025-03-09
Deep learning identifies robust gender differences in functional brain organization and their dissociable links to clinical symptoms in autism
2022-Apr, The British journal of psychiatry : the journal of mental science
研究论文 本研究利用深度学习技术识别自闭症谱系障碍(ASD)中男女功能脑组织的显著差异,并探讨这些差异与临床症状的关联 开发了一种新的时空深度神经网络(stDNN),用于分析功能磁共振成像数据,成功区分ASD患者中的性别差异,并发现这些差异与临床症状的特定关联 研究主要依赖于神经影像数据,可能忽略了其他潜在的生物或环境因素对性别差异的影响 识别ASD中男女功能脑组织的差异,并预测症状严重程度 自闭症谱系障碍(ASD)患者 机器学习和神经影像分析 自闭症谱系障碍 功能磁共振成像(fMRI)和深度学习 时空深度神经网络(stDNN) 神经影像数据 773名ASD患者
30 2025-03-08
Reinforcement learning using Deep Q networks and Q learning accurately localizes brain tumors on MRI with very small training sets
2022-12-23, BMC medical imaging IF:2.9Q2
研究论文 本文探讨了使用深度Q网络和Q学习在MRI上精确定位脑肿瘤的方法,特别是在小训练集上的应用 将深度Q学习推广到基于网格世界的环境,仅需图像和图像掩码,解决了监督深度学习在放射学中的三大限制:需要大量手工标注数据、不可泛化以及缺乏解释性和直觉 研究仅基于30个二维图像切片进行训练和测试,样本量较小 探索强化学习在MRI图像上定位脑肿瘤的应用,特别是在小训练集上的表现 脑肿瘤的MRI图像 计算机视觉 脑肿瘤 深度Q学习 Deep Q Network 图像 30个二维图像切片用于训练,30个用于测试
31 2025-03-02
Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review
2022-Oct-17, Diagnostics (Basel, Switzerland)
综述 本文对心胸影像领域中机器学习和深度学习的应用进行了范围审查,系统搜索了同行评审的医学文献,并定量提取了关键数据元素 提供了心胸影像领域中ML/DL应用的综合概述,并提出了使研究超越概念验证向临床采纳迈进的一般建议 未具体提及研究的局限性 探讨机器学习和深度学习在心胸影像领域的应用及其临床采纳的潜力 心胸影像 计算机视觉 心血管疾病 NA 机器学习(ML),深度学习(DL) 图像 NA
32 2025-03-01
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning
2022-04-01, JAMA cardiology IF:14.8Q1
研究论文 本研究评估了深度学习工作流程在量化心室肥厚和预测左心室壁增厚原因方面的准确性 开发了一种深度学习算法,能够自动、精确地测量左心室壁厚度并区分肥厚原因,如肥厚性心肌病和心脏淀粉样变性 研究依赖于回顾性数据,可能受到数据质量和完整性的限制 评估深度学习算法在心脏疾病诊断中的应用效果 左心室肥厚患者,特别是肥厚性心肌病和心脏淀粉样变性患者 数字病理 心血管疾病 深度学习 深度学习模型 视频(超声心动图) 23745名患者,包括来自Stanford Health Care和Cedars-Sinai Medical Center的患者
33 2025-03-01
Using deep learning to study emotional behavior in rodent models
2022, Frontiers in behavioral neuroscience IF:2.6Q3
综述 本文探讨了深度学习技术在动物行为实验中的应用,特别是如何利用不同模型架构和训练范式来获取行为状态的表示 利用深度学习技术从视频中提取姿势信息,并通过监督、无监督和自监督方法获取行为状态的细微信息 未提及具体实验数据或样本量,可能缺乏实证支持 研究深度学习技术在量化动物情绪行为中的应用 啮齿类动物模型中的情绪行为 机器学习 NA 深度学习 监督、无监督、自监督模型 视频 NA
34 2025-02-23
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
2022-Oct, JAMIA open IF:2.5Q3
研究论文 本文通过集成和蒸馏技术优化深度学习模型在电子癌症病理报告分类中的部署 通过将集成模型的软标签知识蒸馏到单一模型中,减少过拟合和模型过度自信 未提及具体的数据集大小或模型在更广泛数据集上的泛化能力 优化深度学习模型在癌症病理报告分类中的部署,减少过拟合和模型过度自信 电子癌症病理报告 自然语言处理 癌症 知识蒸馏 多任务卷积神经网络(MtCNN) 文本 未提及具体样本数量
35 2025-02-23
Deep learning on resting electrocardiogram to identify impaired heart rate recovery
2022-Aug, Cardiovascular digital health journal IF:2.6Q2
研究论文 本研究利用深度学习模型通过静息心电图预测心率恢复(HRR),并探讨其与心血管疾病风险的关系 首次使用深度学习模型从静息心电图中推断心率恢复,并验证其与未来临床结果(如糖尿病和全因死亡率)的独立关联 研究依赖于UK Biobank的数据,样本可能不具有普遍代表性,且未探讨模型在其他人群中的适用性 探索静息心电图通过深度学习预测心率恢复的可行性及其与心血管疾病风险的关联 UK Biobank参与者,共56,793人 机器学习 心血管疾病 深度学习 卷积神经网络(CNN) 心电图波形 56,793人(平均年龄57岁,51%为女性)
36 2025-02-21
A Novel CNN-LSTM Hybrid Model for Prediction of Electro-Mechanical Impedance Signal Based Bond Strength Monitoring
2022-Dec-16, Sensors (Basel, Switzerland)
研究论文 本研究提出了一种新颖的CNN-LSTM混合模型,用于预测基于机电阻抗信号的粘结强度监测 结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型,用于预测机电阻抗信号 研究仅限于混凝土圆柱样本和嵌入的钢筋,未涉及其他材料或结构 评估机电阻抗技术在监测钢筋混凝土粘结强度发展中的性能 钢筋混凝土圆柱样本和嵌入的钢筋 结构健康监测 NA 机电阻抗(EMI)技术 CNN-LSTM混合模型 机电阻抗信号 混凝土圆柱样本和嵌入的钢筋
37 2025-02-21
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record
2022-12-13, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
研究论文 本文开发并测试了一种结合长短期记忆(LSTM)和机器学习的深度学习模型,用于预测住院成年患者的新发谵妄 结合LSTM和LightGBM模型,显著提高了新发谵妄的预测性能,为后续开发临床决策支持工具提供了算法基础 研究仅基于单一大型学术医疗中心的电子健康记录数据,可能限制了模型的泛化能力 开发并测试一种准确预测住院成年患者新发谵妄的深度学习模型 住院成年患者 机器学习 老年疾病 电子健康记录(EHR)数据分析 LSTM, LightGBM 电子健康记录数据 34,035名患者的331,489次CAM评估
38 2025-02-21
Sensor Data Prediction in Missile Flight Tests
2022-Dec-02, Sensors (Basel, Switzerland)
研究论文 本文提出了一种结合小波分析方法的深度学习预测网络,用于导弹飞行测试中的传感器数据预测 结合小波变换和生成对抗网络(GAN)来重构缺失的传感器数据,并使用带有注意力和扩张网络的长短期记忆(LSTM)进行精确预测 未提及具体的数据集规模或实验的广泛性 提高导弹飞行测试中传感器数据的预测准确性 导弹飞行测试中的传感器数据 机器学习 NA 小波变换,生成对抗网络(GAN),长短期记忆(LSTM) GAN, LSTM 传感器数据 实际导弹飞行测试中的传感器数据
39 2025-02-21
Hybrid the long short-term memory with whale optimization algorithm and variational mode decomposition for monthly evapotranspiration estimation
2022-12-01, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合长短期记忆网络(LSTM)、鲸鱼优化算法(WOA)和变分模态分解(VMD)的混合模型(VMD-WOA-LSTM),用于估算腾格里沙漠东南边缘的月蒸散发量(ET) 创新点在于结合了LSTM、WOA和VMD三种技术,提出了一种新的混合模型VMD-WOA-LSTM,用于更准确地估算沙漠地区的月蒸散发量 研究仅限于腾格里沙漠东南边缘地区,未涉及其他沙漠或气候条件不同的区域 研究目的是通过提出一种新的混合模型,提高沙漠地区月蒸散发量的估算精度,以支持人工植被的可持续性管理 研究对象为腾格里沙漠东南边缘地区的月蒸散发量 机器学习 NA LSTM, WOA, VMD VMD-WOA-LSTM 时间序列数据 NA
40 2025-02-21
HVIOnet: A deep learning based hybrid visual-inertial odometry approach for unmanned aerial system position estimation
2022-Nov, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本研究提出了一种基于深度学习的混合视觉-惯性里程计方法HVIOnet,用于无人航空系统的位置估计 结合卷积神经网络和双向长短期记忆网络,融合视觉和惯性数据,提出了一种新的深度架构用于位置估计 NA 解决自主移动机器人应用中的定位问题 无人航空系统(UAS) 机器视觉 NA 深度学习 CNN, BiLSTM 图像, IMU数据 EuRoC数据集和ROS生成的模拟环境数据
回到顶部