本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
81 | 2025-03-11 |
Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
2022-09, European journal of cancer (Oxford, England : 1990)
DOI:10.1016/j.ejca.2022.06.001
PMID:35781181
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
82 | 2025-03-09 |
Deep learning identifies robust gender differences in functional brain organization and their dissociable links to clinical symptoms in autism
2022-Apr, The British journal of psychiatry : the journal of mental science
DOI:10.1192/bjp.2022.13
PMID:35164888
|
研究论文 | 本研究利用深度学习技术识别自闭症谱系障碍(ASD)中男女功能脑组织的显著差异,并探讨这些差异与临床症状的关联 | 开发了一种新的时空深度神经网络(stDNN),用于分析功能磁共振成像数据,成功区分ASD患者中的性别差异,并发现这些差异与临床症状的特定关联 | 研究主要依赖于神经影像数据,可能忽略了其他潜在的生物或环境因素对性别差异的影响 | 识别ASD中男女功能脑组织的差异,并预测症状严重程度 | 自闭症谱系障碍(ASD)患者 | 机器学习和神经影像分析 | 自闭症谱系障碍 | 功能磁共振成像(fMRI)和深度学习 | 时空深度神经网络(stDNN) | 神经影像数据 | 773名ASD患者 |
83 | 2025-03-08 |
Reinforcement learning using Deep
Q
networks and
Q
learning accurately localizes brain tumors on MRI with very small training sets
2022-12-23, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-022-00919-x
PMID:36564724
|
研究论文 | 本文探讨了使用深度Q网络和Q学习在MRI上精确定位脑肿瘤的方法,特别是在小训练集上的应用 | 将深度Q学习推广到基于网格世界的环境,仅需图像和图像掩码,解决了监督深度学习在放射学中的三大限制:需要大量手工标注数据、不可泛化以及缺乏解释性和直觉 | 研究仅基于30个二维图像切片进行训练和测试,样本量较小 | 探索强化学习在MRI图像上定位脑肿瘤的应用,特别是在小训练集上的表现 | 脑肿瘤的MRI图像 | 计算机视觉 | 脑肿瘤 | 深度Q学习 | Deep Q Network | 图像 | 30个二维图像切片用于训练,30个用于测试 |
84 | 2025-03-02 |
Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review
2022-Oct-17, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics12102512
PMID:36292201
|
综述 | 本文对心胸影像领域中机器学习和深度学习的应用进行了范围审查,系统搜索了同行评审的医学文献,并定量提取了关键数据元素 | 提供了心胸影像领域中ML/DL应用的综合概述,并提出了使研究超越概念验证向临床采纳迈进的一般建议 | 未具体提及研究的局限性 | 探讨机器学习和深度学习在心胸影像领域的应用及其临床采纳的潜力 | 心胸影像 | 计算机视觉 | 心血管疾病 | NA | 机器学习(ML),深度学习(DL) | 图像 | NA |
85 | 2025-03-01 |
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning
2022-04-01, JAMA cardiology
IF:14.8Q1
DOI:10.1001/jamacardio.2021.6059
PMID:35195663
|
研究论文 | 本研究评估了深度学习工作流程在量化心室肥厚和预测左心室壁增厚原因方面的准确性 | 开发了一种深度学习算法,能够自动、精确地测量左心室壁厚度并区分肥厚原因,如肥厚性心肌病和心脏淀粉样变性 | 研究依赖于回顾性数据,可能受到数据质量和完整性的限制 | 评估深度学习算法在心脏疾病诊断中的应用效果 | 左心室肥厚患者,特别是肥厚性心肌病和心脏淀粉样变性患者 | 数字病理 | 心血管疾病 | 深度学习 | 深度学习模型 | 视频(超声心动图) | 23745名患者,包括来自Stanford Health Care和Cedars-Sinai Medical Center的患者 |
86 | 2025-03-01 |
Using deep learning to study emotional behavior in rodent models
2022, Frontiers in behavioral neuroscience
IF:2.6Q3
DOI:10.3389/fnbeh.2022.1044492
PMID:36483523
|
综述 | 本文探讨了深度学习技术在动物行为实验中的应用,特别是如何利用不同模型架构和训练范式来获取行为状态的表示 | 利用深度学习技术从视频中提取姿势信息,并通过监督、无监督和自监督方法获取行为状态的细微信息 | 未提及具体实验数据或样本量,可能缺乏实证支持 | 研究深度学习技术在量化动物情绪行为中的应用 | 啮齿类动物模型中的情绪行为 | 机器学习 | NA | 深度学习 | 监督、无监督、自监督模型 | 视频 | NA |
87 | 2025-02-23 |
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
2022-Oct, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooac075
PMID:36110150
|
研究论文 | 本文通过集成和蒸馏技术优化深度学习模型在电子癌症病理报告分类中的部署 | 通过将集成模型的软标签知识蒸馏到单一模型中,减少过拟合和模型过度自信 | 未提及具体的数据集大小或模型在更广泛数据集上的泛化能力 | 优化深度学习模型在癌症病理报告分类中的部署,减少过拟合和模型过度自信 | 电子癌症病理报告 | 自然语言处理 | 癌症 | 知识蒸馏 | 多任务卷积神经网络(MtCNN) | 文本 | 未提及具体样本数量 |
88 | 2025-02-23 |
Deep learning on resting electrocardiogram to identify impaired heart rate recovery
2022-Aug, Cardiovascular digital health journal
IF:2.6Q2
DOI:10.1016/j.cvdhj.2022.06.001
PMID:36046430
|
研究论文 | 本研究利用深度学习模型通过静息心电图预测心率恢复(HRR),并探讨其与心血管疾病风险的关系 | 首次使用深度学习模型从静息心电图中推断心率恢复,并验证其与未来临床结果(如糖尿病和全因死亡率)的独立关联 | 研究依赖于UK Biobank的数据,样本可能不具有普遍代表性,且未探讨模型在其他人群中的适用性 | 探索静息心电图通过深度学习预测心率恢复的可行性及其与心血管疾病风险的关联 | UK Biobank参与者,共56,793人 | 机器学习 | 心血管疾病 | 深度学习 | 卷积神经网络(CNN) | 心电图波形 | 56,793人(平均年龄57岁,51%为女性) |
89 | 2025-02-21 |
A Novel CNN-LSTM Hybrid Model for Prediction of Electro-Mechanical Impedance Signal Based Bond Strength Monitoring
2022-Dec-16, Sensors (Basel, Switzerland)
DOI:10.3390/s22249920
PMID:36560293
|
研究论文 | 本研究提出了一种新颖的CNN-LSTM混合模型,用于预测基于机电阻抗信号的粘结强度监测 | 结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型,用于预测机电阻抗信号 | 研究仅限于混凝土圆柱样本和嵌入的钢筋,未涉及其他材料或结构 | 评估机电阻抗技术在监测钢筋混凝土粘结强度发展中的性能 | 钢筋混凝土圆柱样本和嵌入的钢筋 | 结构健康监测 | NA | 机电阻抗(EMI)技术 | CNN-LSTM混合模型 | 机电阻抗信号 | 混凝土圆柱样本和嵌入的钢筋 |
90 | 2025-02-21 |
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record
2022-12-13, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocac210
PMID:36303456
|
研究论文 | 本文开发并测试了一种结合长短期记忆(LSTM)和机器学习的深度学习模型,用于预测住院成年患者的新发谵妄 | 结合LSTM和LightGBM模型,显著提高了新发谵妄的预测性能,为后续开发临床决策支持工具提供了算法基础 | 研究仅基于单一大型学术医疗中心的电子健康记录数据,可能限制了模型的泛化能力 | 开发并测试一种准确预测住院成年患者新发谵妄的深度学习模型 | 住院成年患者 | 机器学习 | 老年疾病 | 电子健康记录(EHR)数据分析 | LSTM, LightGBM | 电子健康记录数据 | 34,035名患者的331,489次CAM评估 |
91 | 2025-02-21 |
Sensor Data Prediction in Missile Flight Tests
2022-Dec-02, Sensors (Basel, Switzerland)
DOI:10.3390/s22239410
PMID:36502111
|
研究论文 | 本文提出了一种结合小波分析方法的深度学习预测网络,用于导弹飞行测试中的传感器数据预测 | 结合小波变换和生成对抗网络(GAN)来重构缺失的传感器数据,并使用带有注意力和扩张网络的长短期记忆(LSTM)进行精确预测 | 未提及具体的数据集规模或实验的广泛性 | 提高导弹飞行测试中传感器数据的预测准确性 | 导弹飞行测试中的传感器数据 | 机器学习 | NA | 小波变换,生成对抗网络(GAN),长短期记忆(LSTM) | GAN, LSTM | 传感器数据 | 实际导弹飞行测试中的传感器数据 |
92 | 2025-02-21 |
Hybrid the long short-term memory with whale optimization algorithm and variational mode decomposition for monthly evapotranspiration estimation
2022-12-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-25208-z
PMID:36456679
|
研究论文 | 本文提出了一种结合长短期记忆网络(LSTM)、鲸鱼优化算法(WOA)和变分模态分解(VMD)的混合模型(VMD-WOA-LSTM),用于估算腾格里沙漠东南边缘的月蒸散发量(ET) | 创新点在于结合了LSTM、WOA和VMD三种技术,提出了一种新的混合模型VMD-WOA-LSTM,用于更准确地估算沙漠地区的月蒸散发量 | 研究仅限于腾格里沙漠东南边缘地区,未涉及其他沙漠或气候条件不同的区域 | 研究目的是通过提出一种新的混合模型,提高沙漠地区月蒸散发量的估算精度,以支持人工植被的可持续性管理 | 研究对象为腾格里沙漠东南边缘地区的月蒸散发量 | 机器学习 | NA | LSTM, WOA, VMD | VMD-WOA-LSTM | 时间序列数据 | NA |
93 | 2025-02-21 |
HVIOnet: A deep learning based hybrid visual-inertial odometry approach for unmanned aerial system position estimation
2022-Nov, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2022.09.001
PMID:36152378
|
研究论文 | 本研究提出了一种基于深度学习的混合视觉-惯性里程计方法HVIOnet,用于无人航空系统的位置估计 | 结合卷积神经网络和双向长短期记忆网络,融合视觉和惯性数据,提出了一种新的深度架构用于位置估计 | NA | 解决自主移动机器人应用中的定位问题 | 无人航空系统(UAS) | 机器视觉 | NA | 深度学习 | CNN, BiLSTM | 图像, IMU数据 | EuRoC数据集和ROS生成的模拟环境数据 |
94 | 2025-02-21 |
Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal
2022-Oct-22, Sensors (Basel, Switzerland)
DOI:10.3390/s22218087
PMID:36365785
|
研究论文 | 本文提出了一种基于EDA信号的个性化深度BiLSTM RNN模型,用于疼痛强度分类 | 使用深度学习框架自动化特征工程步骤,直接处理原始输入信号,并探索了BiLSTM RNN与XGB的集成模型 | 样本量较小,仅涉及29名受试者 | 自动评估疼痛强度,实现实时疼痛监测 | 29名受试者的EDA信号 | 机器学习 | NA | EDA信号分解与增强 | BiLSTM RNN, XGB | 生理信号 | 29名受试者 |
95 | 2025-02-21 |
State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning
2022-Oct-15, Sensors (Basel, Switzerland)
DOI:10.3390/s22207835
PMID:36298185
|
研究论文 | 本文提出了一种基于长短期记忆网络(LSTM)和增量容量分析的电池健康状态(SOH)估计方法,并利用迁移学习提高模型在不同负载模式下的适用性 | 结合增量容量分析(ICA)和离散小波变换(DWT)预处理数据,优化LSTM模型的输入,并通过迁移学习扩展模型的应用范围 | 方法依赖于早期循环的放电电压曲线,可能对数据采集的精度和稳定性有较高要求 | 提高电池健康状态(SOH)估计的准确性和可靠性 | 电池的健康状态(SOH) | 机器学习 | NA | 增量容量分析(ICA)、离散小波变换(DWT)、灰色关联分析(GRA) | 长短期记忆网络(LSTM) | 电压分布数据 | 小批量数据 |
96 | 2025-02-21 |
A Long Short-Term Memory-Based Approach for Detecting Turns and Generating Road Intersections from Vehicle Trajectories
2022-Sep-15, Sensors (Basel, Switzerland)
DOI:10.3390/s22186997
PMID:36146345
|
研究论文 | 本文提出了一种基于长短期记忆(LSTM)的方法,用于从车辆轨迹中检测转弯并生成道路交叉口 | 使用深度学习技术,特别是LSTM模型,来检测转弯轨迹段(TTSs),并通过聚类生成交叉口的覆盖范围和内部结构 | 虽然该方法在检测精度和召回率上表现优异,但其性能可能受到不同区域道路模式和大小的变化影响 | 提高从车辆轨迹中检测道路交叉口的准确性和效率 | 车辆轨迹数据 | 机器学习 | NA | 深度学习 | LSTM | 轨迹数据 | 武汉市的车辆轨迹数据 |
97 | 2025-02-21 |
Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest
2022-Sep-10, The Science of the total environment
DOI:10.1016/j.scitotenv.2022.155886
PMID:35569652
|
研究论文 | 本研究比较了随机森林、卷积神经网络和长短期记忆神经网络在估算青藏高原多年冻土活动层厚度和季节性解冻深度方面的性能 | 首次直接比较了机器学习和深度学习在多年冻土活动层厚度预测中的模型性能,并探讨了不同滞后时间对模型预测效果的影响 | 研究仅基于2003年至2011年的数据,可能无法完全反映最新的多年冻土变化趋势 | 准确估算青藏高原多年冻土活动层厚度和季节性解冻深度,以理解气候变暖对多年冻土的影响 | 青藏高原多年冻土活动层厚度和季节性解冻深度 | 机器学习 | NA | NA | 随机森林(RF)、卷积神经网络(CNN)、长短期记忆神经网络(LSTM) | 气象序列、现场观测数据、地理空间信息 | 2003年至2011年青藏高原多年冻土数据 |
98 | 2025-02-21 |
Attention-Emotion-Enhanced Convolutional LSTM for Sentiment Analysis
2022-09, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2021.3056664
PMID:33600326
|
研究论文 | 本文提出了一种名为AEC-LSTM的新模型,用于文本情感检测,旨在通过整合情感智能(EI)和注意力机制来改进LSTM网络 | 提出了一种结合情感智能和注意力机制的LSTM网络改进模型,通过情感调制器和情感估计器实现情感调制,并引入了主题级注意力机制 | 未提及具体的数据集规模或实验限制 | 改进文本情感检测的性能 | 文本数据 | 自然语言处理 | NA | NA | LSTM, CNN | 文本 | NA |
99 | 2025-02-21 |
Classification of overlapping spikes using convolutional neural networks and long short term memory
2022-09, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2022.105888
PMID:35872414
|
研究论文 | 本文提出了一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的深度学习方法,用于实现重叠尖峰信号的分类 | 结合CNN和LSTM进行重叠尖峰信号的分类,相比之前的1D-CNN方法有更好的表现 | 未提及具体局限性 | 提高重叠尖峰信号的分类准确率,以更好地理解大脑活动 | 模拟数据和从猕猴初级视觉皮层记录的实验数据 | 机器学习 | NA | 深度学习 | CNN + LSTM | 尖峰信号数据 | 模拟数据和猕猴初级视觉皮层的实验数据 |
100 | 2025-02-21 |
Non-Contact Heartbeat Detection Based on Ballistocardiogram Using UNet and Bidirectional Long Short-Term Memory
2022-08, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2022.3162396
PMID:35333727
|
研究论文 | 本文提出了一种基于UNet和双向长短期记忆(Bi-LSTM)的深度学习模型,用于从心冲击图(BCG)信号中自动检测心跳 | 结合UNet和Bi-LSTM的深度学习模型,有效解决了低信噪比BCG信号中的心跳检测问题,尤其是在不同测量姿势和心率范围下的鲁棒性 | 研究样本量较小,仅包含43名受试者,且未涉及更多复杂环境下的验证 | 开发一种非接触式心跳检测方法,用于家庭护理中的心血管疾病风险预测和睡眠分期 | 心冲击图(BCG)信号 | 机器学习 | 心血管疾病 | 深度学习 | UNet, Bi-LSTM | 信号数据 | 43名受试者 |