本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1161 | 2024-08-30 |
Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma
2022, Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...
DOI:10.1007/978-3-030-98253-9_28
PMID:35399870
|
研究论文 | 本研究利用基于DenseNet架构的深度学习框架,结合PET图像、CT图像、原发肿瘤分割掩模和临床数据,预测头颈鳞状细胞癌患者的无进展生存期 | 本研究首次将肿瘤分割掩模作为额外的输入通道,显著提高了预测模型的C-index值 | NA | 提高头颈鳞状细胞癌患者的预后预测准确性 | 头颈鳞状细胞癌患者的无进展生存期 | 机器学习 | 头颈鳞状细胞癌 | 深度学习 | DenseNet | 图像 | 大量训练数据来自2021年HECKTOR挑战赛 |
1162 | 2024-08-30 |
Optimizing Graphical Procedures for Multiplicity Control in a Confirmatory Clinical Trial via Deep Learning
2022, Statistics in biopharmaceutical research
IF:1.5Q2
DOI:10.1080/19466315.2020.1799855
PMID:35401935
|
研究论文 | 本文评估了两种现有的无导数约束方法的性能,并提出了一种基于深度学习的优化框架,用于在确认性临床试验中优化图形程序以控制多重性 | 提出了一种基于前馈神经网络(FNN)的深度学习增强优化框架,该方法在保持某些测试程序特征固定的同时,优化其他特征 | NA | 优化确认性临床试验中的图形程序,以控制多重性并最大化特定目标函数 | 确认性临床试验中的多重性控制 | 机器学习 | NA | 深度学习 | 前馈神经网络(FNN) | NA | NA |
1163 | 2024-08-30 |
A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19?
2022, PeerJ. Computer science
DOI:10.7717/peerj-cs.958
PMID:35634112
|
综述 | 本文综述了2020年和2021年利用人工智能工具分析咳嗽声音进行COVID-19筛查的最新研究 | 采用机器学习算法和深度学习模型分析咳嗽声音,以实现COVID-19的筛查 | 未包括预印本文章,因为它们未经同行评审 | 探讨人工智能工具在资源有限地区进行COVID-19大规模筛查的应用 | 咳嗽声音分析 | 机器学习 | COVID-19 | 机器学习 | 深度学习模型 | 声音 | NA |
1164 | 2024-08-30 |
Multiple Traffic Target Tracking with Spatial-Temporal Affinity Network
2022, Computational intelligence and neuroscience
DOI:10.1155/2022/9693767
PMID:35655505
|
研究论文 | 本文提出了一种时空编码解码亲和网络用于多交通目标跟踪,旨在利用深度学习的力量学习检测和轨迹的鲁棒时空亲和特征以进行数据关联 | 该研究提出了一种新的时空编码解码亲和网络,通过两阶段变换器编码模块捕获图像级别和轨迹级别的特征,以及一个空间变换器解码模块计算关联亲和度,从而实现高效的数据关联 | NA | 利用深度学习技术改进智能交通系统中的多目标跟踪任务 | 多交通目标的跟踪 | 计算机视觉 | NA | 深度学习 | 变换器(Transformer) | 图像 | 使用了三个流行的多交通目标跟踪数据集:KITTI、UA-DETRAC和VisDrone进行评估 |
1165 | 2024-08-30 |
Interpretable Deep Learning Model Reveals Subsequences of Various Functions for Long Non-Coding RNA Identification
2022, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2022.876721
PMID:35685437
|
研究论文 | 本文介绍了一种名为Xlnc1DCNN的工具,用于通过一维卷积神经网络区分长非编码RNA(lncRNA)和蛋白质编码转录本(PCT),并提供预测解释 | Xlnc1DCNN不仅在准确性和F1分数上优于其他现有工具,还提供了预测结果的解释,揭示了lncRNA和PCT的主要识别特征 | NA | 开发一种能够有效区分lncRNA和PCT的计算工具,并提供预测结果的解释 | 长非编码RNA(lncRNA)和蛋白质编码转录本(PCT) | 机器学习 | NA | 下一代测序技术 | 一维卷积神经网络(1DCNN) | 序列数据 | 人类测试集 |
1166 | 2024-08-30 |
PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants
2022, Plant phenomics (Washington, D.C.)
DOI:10.34133/2022/9787643
PMID:35693119
|
研究论文 | 本文提出了一种名为PSegNet的深度学习网络,用于植物点云的语义和实例分割 | 引入了Voxelized Farthest Point Sampling (VFPS)点云下采样策略和三个新模块:Double-Neighborhood Feature Extraction Block (DNFEB)、Double-Granularity Feature Fusion Module (DGFFM)和Attention Module (AM) | 未提及 | 提高植物表型分析中对植物生长监测的自动化水平 | 植物的叶子和茎的3D点云 | 计算机视觉 | NA | 深度学习 | PSegNet | 点云 | 涉及三种植物物种的数据集 |
1167 | 2024-08-30 |
Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline
2022, Plant phenomics (Washington, D.C.)
DOI:10.34133/2022/9758532
PMID:35693120
|
研究论文 | 开发并验证了一种基于深度学习的自动化微根窗图像分析流程 | 结合了先进的软件工具,使用深度神经网络和自动特征提取,显著减少了微根窗图像的处理时间 | NA | 开发一种用于高通量图像分析的客观方法,为田间根系表型分析提供数据 | 作物根系及其在农业生态系统中的作用 | 计算机视觉 | NA | 深度神经网络 | 神经网络模型 | 图像 | 超过36,500张图像 |
1168 | 2024-08-30 |
Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images
2022, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2022.888814
PMID:35720719
|
研究论文 | 本文开发并评估了一种基于深度学习的动脉血管壁和斑块自动分割方法,该方法有助于在磁共振血管壁成像中进行动脉形态学定量分析 | 提出的自动分割方法在分割动脉血管壁和斑块方面与手动方法具有良好的一致性,并且比传统U-Net、Attention U-Net和Inception U-Net在相同测试集上表现更好 | NA | 开发和评估一种自动分割动脉血管壁和斑块的方法,以促进动脉形态学在磁共振血管壁成像中的定量分析 | 动脉血管壁和斑块的自动分割 | 计算机视觉 | 心血管疾病 | 磁共振血管壁成像 | 卷积神经网络 | 图像 | 124名患有动脉粥样硬化斑块的患者 |
1169 | 2024-08-29 |
Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning
2022-Dec-01, Machine learning: science and technology
DOI:10.1088/2632-2153/ac9bcc
PMID:36698865
|
研究论文 | 本研究提出了一种基于生物物理特征的机器学习方法,用于乳腺癌检测,旨在提高诊断性能并提供恶性概率的彩色叠加视觉图。 | 本研究通过结合原始超声参数和机器学习方法,提高了乳腺癌诊断的准确性,并提供了恶性概率的彩色叠加视觉图。 | NA | 提高超声乳腺检查的诊断准确性。 | 乳腺癌检测。 | 机器学习 | 乳腺癌 | 超声 | 支持向量机 | 图像 | 150个乳腺病变样本 |
1170 | 2024-08-29 |
Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images
2022-05-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-12329-8
PMID:35610276
|
研究论文 | 本研究利用卷积神经网络(CNN)自动分割发育中的鼻囊软骨结构,通过X射线计算显微断层扫描(μCT)图像进行分析 | 提出了一种针对大尺寸图像优化的CNN分割模型,并使用独特的手动注释数据库进行训练 | 图像数据尺寸大且训练数据库相对较小,包括基因改造的小鼠胚胎,分析结构的表型与正常情况不同 | 加速μCT分析动物模型中软骨骨骼元素的发育疾病 | 发育中的鼻囊软骨结构 | 计算机视觉 | NA | X射线计算显微断层扫描(μCT) | CNN | 图像 | 包括基因改造的小鼠胚胎 |
1171 | 2024-08-29 |
Birdsong classification based on ensemble multi-scale convolutional neural network
2022-05-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-12121-8
PMID:35606386
|
研究论文 | 本文针对传统卷积神经网络(CNN)在层数增加时语义信息丰富但细节信息丢失的问题,提出了一种基于小波变换特征谱图的多尺度卷积神经网络(MSCNN)和集成多尺度卷积神经网络(EMSCNN)分类框架,用于鸟鸣分类 | 本文提出的EMSCNN模型通过集成多尺度卷积神经网络,有效解决了传统CNN在处理鸟鸣数据时全局信息丢失的问题,提高了分类性能 | NA | 提高鸟鸣分类的准确性和稳定性 | 鸟鸣数据 | 计算机视觉 | NA | 小波变换 | CNN | 音频 | 30种鸟类 |
1172 | 2024-08-29 |
Hippocampal representations for deep learning on Alzheimer's disease
2022-05-21, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-12533-6
PMID:35597814
|
研究论文 | 本文比较了五种海马体表示方法及其相应的网络架构,用于通过深度学习分析阿尔茨海默病中的海马体变化 | 本文首次评估了不同海马体表示方法对深度学习分析阿尔茨海默病的影响 | 需要进一步研究以确定最佳的海马体表示方法和网络架构 | 探讨不同海马体表示方法对深度学习预测阿尔茨海默病的影响 | 海马体在阿尔茨海默病中的变化 | 机器学习 | 阿尔茨海默病 | 深度学习 | 神经网络 | 图像 | 独立测试数据集 |
1173 | 2024-08-29 |
Predicting the failure of two-dimensional silica glasses
2022-May-20, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-022-30530-1
PMID:35595727
|
研究论文 | 本文利用机器学习方法预测模拟二维硅玻璃的失效,并通过Grad-CAM构建注意力图以实现物理解释 | 本文通过Grad-CAM构建的注意力图可以物理解释为拓扑缺陷和局部势能,提高了预测结果的可解释性 | NA | 预测材料的失效 | 二维硅玻璃 | 机器学习 | NA | 机器学习方法 | 人工神经网络 | 结构信息 | 不同形状和大小的样本以及实验图像 |
1174 | 2024-08-29 |
A fine-grained network for human identification using panoramic dental images
2022-May-13, Patterns (New York, N.Y.)
DOI:10.1016/j.patter.2022.100485
PMID:35607622
|
研究论文 | 本文提出了一种利用全景牙科图像进行人体细粒度识别的网络模型 | 设计了一种双分支架构,其中一个分支作为图像特征提取器,另一个作为掩码特征提取器,并通过改进的注意力机制和ArcFace损失函数提高了模型性能 | NA | 开发一种新的深度学习模型,用于通过全景牙科图像进行人体识别 | 利用牙科图像中的牙齿掩码分布来区分不同个体的细微牙齿差异 | 计算机视觉 | NA | 深度神经网络 | CNN | 图像 | 23,715张全景X光牙科图像,来自10,113名患者 |
1175 | 2024-08-29 |
Analysis of Deep Learning-Based Phase Retrieval Algorithm Performance for Quantitative Phase Imaging Microscopy
2022-May-06, Sensors (Basel, Switzerland)
DOI:10.3390/s22093530
PMID:35591220
|
研究论文 | 本文提出了一种理论框架,用于分析和量化基于深度学习的相位检索算法在定量相位成像显微镜中的性能 | 通过比较恢复的相位图像与其理论相位轮廓,评估了深度学习在相位检索中的正确性和可靠性 | NA | 分析和量化深度学习在定量相位成像中的应用性能 | 包括均匀等离子体金传感器和介电层样品等有损和无损样本 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 包括有损的等离子体样品和无损的介电层样品 |
1176 | 2024-08-29 |
Significance and stability of deep learning-based identification of subtypes within major psychiatric disorders
2022-04, Molecular psychiatry
IF:9.6Q1
DOI:10.1038/s41380-022-01482-1
PMID:35228675
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1177 | 2024-08-29 |
The next step in deep learning-guided clinical trials
2022-Apr, Nature cardiovascular research
IF:9.4Q1
DOI:10.1038/s44161-022-00044-6
PMID:39196129
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1178 | 2024-08-29 |
DOTA: Deep Learning Optimal Transport Approach to Advance Drug Repositioning for Alzheimer's Disease
2022-01-24, Biomolecules
IF:4.8Q1
DOI:10.3390/biom12020196
PMID:35204697
|
研究论文 | 本文开发了一种名为DOTA的新型深度学习方法,用于重新定位FDA批准的药物,以治疗阿尔茨海默病 | DOTA方法结合了多模态自编码器和Wasserstein变分自编码器,用于整合异质药物信息并识别有效的阿尔茨海默病药物 | NA | 开发一种新的深度学习方法,用于药物重新定位,以治疗阿尔茨海默病 | FDA批准的药物,特别是具有昼夜节律效应的抗精神病药物 | 机器学习 | 阿尔茨海默病 | 深度学习 | 自编码器 | 药物信息 | 涉及多种抗精神病药物,如quetiapine, aripiprazole, risperidone等 |
1179 | 2024-08-29 |
Contour-aware semantic segmentation network with spatial attention mechanism for medical image
2022, The Visual computer
DOI:10.1007/s00371-021-02075-9
PMID:33642659
|
研究论文 | 本文提出了一种基于Unet的轮廓感知语义分割网络,用于医学图像分割 | 引入语义分支和细节分支,分别提取语义特征和增强轮廓信息,并设计MulBlock模块和空间注意力模块(CAM)以提高网络的表示能力 | NA | 开发适用于临床环境的计算机辅助系统中的医学图像分割技术 | 医学图像分割 | 计算机视觉 | NA | 深度学习 | Unet | 图像 | NA |
1180 | 2024-08-29 |
Civil airline fare prediction with a multi-attribute dual-stage attention mechanism
2022, Applied intelligence (Dordrecht, Netherlands)
DOI:10.1007/s10489-021-02602-0
PMID:34764615
|
研究论文 | 本文提出了一种基于多属性双阶段注意力机制的民航票价预测系统 | 引入了多属性双阶段注意力(MADA)机制,结合不同类型的数据,并通过Seq2Seq模型在编码器和解码器中加入注意力机制,以提高预测准确性 | 未提及具体限制 | 提高民航票价预测的准确性 | 民航票价预测系统 | 机器学习 | NA | Seq2Seq模型 | MADA | 时间序列数据 | 实际民航数据集 |