本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2024-12-10 |
Deep Morphology Learning Enhances Ex Vivo Drug Profiling-Based Precision Medicine
2022-11-02, Blood cancer discovery
IF:11.5Q1
DOI:10.1158/2643-3230.BCD-21-0219
PMID:36125297
|
研究论文 | 本文研究了在复发或难治性血液癌症患者中,使用弱监督深度学习方法分析细胞形态(DML)来补充基于诊断标记的恶性与非恶性细胞识别,以提高药物测试的准确性和个性化治疗的效果 | 本文提出了使用弱监督深度学习方法分析细胞形态(DML)来提高药物测试的重复性和药物作用模式的聚类效果,并通过自主识别与疾病相关的细胞形态来适应批次效应 | NA | 研究如何通过深度学习方法提高基于患者活检细胞的药物测试的准确性和个性化治疗效果 | 复发或难治性血液癌症患者的活检细胞 | 机器学习 | 血液癌症 | 深度学习 | NA | 细胞形态数据 | 390个活检样本,来自289名患者 |
102 | 2024-12-10 |
Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches
2022-Oct-06, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-022-01868-2
PMID:36201085
|
研究论文 | 本文比较了13种预训练深度学习模型在猴痘病毒检测中的表现 | 提出了一种基于多数投票的集成方法,显著提高了检测性能 | NA | 开发一种高效的猴痘病毒检测方法 | 猴痘病毒 | 机器学习 | NA | 深度学习 | 深度学习模型 | 图像 | 使用了一个公开的数据集 |
103 | 2024-12-08 |
Deep neural network enabled active metasurface embedded design
2022-Sep, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2022-0152
PMID:39635158
|
研究论文 | 本文提出了一种利用深度学习方法进行光子器件中嵌入式主动超表面结构的前向建模和逆向设计的研究 | 结合神经网络设计和散射矩阵优化显著简化了计算开销,同时实现了精确的目标驱动设计 | NA | 研究光子器件中嵌入式主动超表面结构的前向建模和逆向设计 | 光子器件中的主动超表面结构 | 计算机视觉 | NA | 深度学习 | 神经网络 | NA | NA |
104 | 2024-12-08 |
Photonic (computational) memories: tunable nanophotonics for data storage and computing
2022-Sep, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2022-0089
PMID:39635175
|
综述 | 本文综述了新兴的纳米光子器件及其在数据存储和计算中的应用 | 探讨了光子集成电路和光学纳米材料在芯片级光子存储中的新机遇 | 光子存储在存储密度上尚未能与电子数字存储相媲美 | 探讨如何通过光子存储和计算技术改进或超越传统的冯·诺依曼架构 | 纳米光子器件及其在光子存储和计算中的应用 | NA | NA | 光子集成电路 (PICs) | NA | NA | NA |
105 | 2024-12-08 |
Data enhanced iterative few-sample learning algorithm-based inverse design of 2D programmable chiral metamaterials
2022-Sep, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2022-0310
PMID:39635508
|
研究论文 | 提出了一种数据增强迭代少样本学习算法(DEIFS),用于精确高效地逆向设计多形状的二维手性超材料 | DEIFS算法通过数据增强和迭代过程,显著减少了数据集的大小,同时提高了逆向设计的速度和准确性,并增加了对实验结果的数据解释性 | NA | 实现二维手性超材料的精确和高效逆向设计 | 二维衍射手性结构,包括不同几何参数(宽度、分离空间、桥长和金长) | 计算机视觉 | NA | 数据增强迭代少样本学习算法(DEIFS) | NA | 光谱数据 | 涉及多种形状的二维手性超材料 |
106 | 2024-12-08 |
Deep learning in light-matter interactions
2022-Jul, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2022-0197
PMID:39635557
|
研究论文 | 本文探讨了深度学习在光物质相互作用中的应用及其带来的机遇和挑战 | 深度学习改善了纳米光子器件的设计和实验数据的获取与分析,甚至在理论基础不足或过于复杂的情况下 | 深度学习作为黑箱模型,难以理解和解释其结果和可靠性,尤其是在数据集不完整或数据由对抗性方法生成时 | 探讨深度学习在光子学中的应用及其带来的机遇和挑战 | 光物质相互作用及其在光子学中的应用 | 机器学习 | NA | 深度学习 | NA | 实验数据和模拟数据 | NA |
107 | 2024-12-08 |
Computational spectrometers enabled by nanophotonics and deep learning
2022-Jun, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2021-0636
PMID:39635673
|
综述 | 介绍了一种新型光谱仪,该光谱仪主要依赖计算技术来恢复光谱信息 | 结合了纳米光子学、高级信号处理和机器学习的最新进展 | 面临关键挑战,需要进一步发展 | 回顾计算光谱仪的最新进展,识别关键挑战,并指出未来可能的发展方向 | 计算光谱仪及其在机器感知和成像中的应用 | NA | NA | 纳米光子学、机器学习 | NA | 光谱数据 | NA |
108 | 2024-12-08 |
Advancing statistical learning and artificial intelligence in nanophotonics inverse design
2022-Jun, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2021-0660
PMID:39635678
|
综述 | 本文综述了纳米光子学逆向设计领域的最新优化方法、深度学习及其混合技术 | 探讨了深度学习在纳米光子学逆向设计中的应用及其混合技术 | 未具体提及 | 探讨纳米光子学逆向设计中的优化方法和人工智能技术的应用 | 纳米光子学逆向设计中的材料和几何配置 | 纳米光子学 | NA | 深度学习 | NA | NA | NA |
109 | 2024-12-08 |
Free-form optimization of nanophotonic devices: from classical methods to deep learning
2022-Apr, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2021-0713
PMID:39633938
|
综述 | 本文综述了自由形式纳米光子器件设计的新兴领域,涵盖了从经典方法到深度学习方法的优化策略 | 本文介绍了自由形式设计方案,突破了传统设计约束,充分利用了设计潜力 | NA | 系统概述自由形式纳米光子器件设计领域 | 自由形式纳米光子器件的优化策略 | 纳米光子学 | NA | NA | NA | NA | NA |
110 | 2024-12-08 |
AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens
2022-Jan-25, BMC genomics
IF:3.5Q2
DOI:10.1186/s12864-022-08310-4
PMID:35078402
|
研究论文 | 介绍了一种名为AMPlify的注意力深度学习模型,用于发现对世界卫生组织优先病原体有效的新型抗菌肽 | 提出了AMPlify模型,通过深度学习方法预测抗菌肽,并展示了其在筛选蛙类基因组衍生的肽序列中的应用 | NA | 寻找替代传统抗生素的新型抗菌肽 | 抗菌肽及其对世界卫生组织优先病原体的活性 | 机器学习 | NA | 深度学习 | 注意力模型 | 序列数据 | 从牛蛙基因组中提取的肽序列 |
111 | 2024-12-08 |
3D bi-directional transformer U-Net for medical image segmentation
2022, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2022.1080715
PMID:36687770
|
研究论文 | 本文提出了一种新的3D双向Transformer U-Net框架,用于三维医学图像分割 | 设计了一种新的注意力机制,通过3D计算充分提取自注意力能力,并结合3D Transformer和3D DCNN的优势 | NA | 改进现有深度卷积神经网络在医学图像分割任务中处理全局关系的能力 | 三维医学图像分割 | 计算机视觉 | NA | 深度卷积神经网络 (DCNN) | 3D双向Transformer U-Net | 图像 | 两个独立数据集,包含3D MRI和CT图像 |
112 | 2024-12-08 |
A learning based approach for designing extended unit cell metagratings
2022-Jan, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2021-0540
PMID:39633889
|
研究论文 | 本文提出了一种基于深度学习的扩展单元晶格超表面逆向设计方法 | 该方法通过学习超表面在反射和透射阶次上的光谱响应,避免了传统方法中由于元原子间耦合效应未充分考虑而导致的效率降低问题 | NA | 提高超表面设计的效率和性能 | 扩展单元晶格超表面 | 纳米光子学 | NA | 深度学习 | 深度神经网络 | 光谱数据 | NA |
113 | 2024-12-08 |
Deep-learning-based recognition of multi-singularity structured light
2022-Jan, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2021-0489
PMID:39635381
|
研究论文 | 本文介绍了一种基于深度学习的框架,用于识别具有多重奇点的结构化光 | 该框架能够直接从光束传播后的两个强度模式中揭示多重奇点相位结构,并输出相位信息,从而释放扭曲光子的丰富直观信息 | NA | 开发一种能够精确识别具有多重奇点的结构化光的新技术 | 多重奇点的结构化光及其相位信息 | 计算机视觉 | NA | 深度学习 (DL) | NA | 图像 | NA |
114 | 2024-12-01 |
Improving the repeatability of deep learning models with Monte Carlo dropout
2022-Nov-18, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-022-00709-3
PMID:36400939
|
研究论文 | 本文评估了四种模型类型在医学图像分类任务中的重复性,并研究了蒙特卡罗 dropout 对分类性能和重复性的影响 | 利用蒙特卡罗预测显著提高了重复性,特别是在类别边界处,并减少了95%一致性限制和类别不一致率 | 超过20次蒙特卡罗迭代后,重复性没有进一步提高 | 评估深度学习模型在医学图像分类任务中的重复性,并研究蒙特卡罗 dropout 对分类性能和重复性的影响 | 四种模型类型(二分类、多分类、有序分类和回归)在医学图像分类任务中的重复性 | 机器学习 | NA | 蒙特卡罗 dropout | ResNet 和 DenseNet | 图像 | 来自同一患者在同一就诊期间获取的图像 |
115 | 2024-12-01 |
JSE: Joint Semantic Encoder for zero-shot gesture learning
2022-Aug, Pattern analysis and applications : PAA
IF:3.7Q2
DOI:10.1007/s10044-021-00992-y
PMID:39588314
|
研究论文 | 本文研究了三种不同的特征提取技术对零样本手势学习性能的影响,并提出了一种名为联合语义编码器(JSE)的双线性自编码器方法 | 本文首次研究了特征选择对零样本手势学习的影响,并提出了联合语义编码器(JSE)方法,该方法在零样本手势识别中表现优异 | 本文未详细讨论JSE方法在其他领域的适用性及其泛化能力 | 研究特征提取技术对零样本手势学习性能的影响,并提出一种新的方法来提高零样本手势识别的准确性 | 零样本手势学习中的特征提取技术和识别性能 | 机器学习 | NA | 深度学习 | 自编码器 | 图像 | 未明确提及具体样本数量 |
116 | 2024-12-01 |
Federated Learning for Multicenter Collaboration in Ophthalmology: Improving Classification Performance in Retinopathy of Prematurity
2022-08, Ophthalmology. Retina
DOI:10.1016/j.oret.2022.02.015
PMID:35296449
|
研究论文 | 比较了使用集中数据和联邦学习(FL)两种方法在多机构数据集上训练的深度学习分类器在早产儿视网膜病变(ROP)诊断中的表现 | 证明了联邦学习模型在多机构协作中的有效性,特别是在资源较少的机构中 | NA | 比较集中数据和联邦学习两种方法在多机构数据集上训练的深度学习分类器在早产儿视网膜病变诊断中的表现 | 早产儿视网膜病变(ROP)的诊断 | 计算机视觉 | 眼科疾病 | 联邦学习(FL) | 深度学习分类器 | 图像 | 5255张广角视网膜图像,来自7个机构的儿科重症监护室 |
117 | 2024-11-24 |
Denoising diffusion weighted imaging data using convolutional neural networks
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0274396
PMID:36108272
|
研究论文 | 本文提出了一种使用一维卷积神经网络(1D-CNN)对高b值扩散加权成像(DWI)数据进行去噪的方法 | 该方法利用低噪声数据集进行训练,能够在不依赖大量训练样本的情况下,有效去除高噪声DWI图像中的噪声 | 该方法需要一个低噪声的单个受试者数据集进行训练,这在实际应用中可能存在限制 | 开发一种有效的DWI图像去噪方法,以提高组织微结构测量的准确性 | 高b值扩散加权成像数据 | 计算机视觉 | NA | 扩散加权成像(DWI) | 一维卷积神经网络(1D-CNN) | 图像 | 单个受试者数据集用于训练,多个受试者的高噪声数据集用于验证 |
118 | 2024-11-24 |
Artificial Intelligence: Innovation to Assist in the Identification of Sono-anatomy for Ultrasound-Guided Regional Anaesthesia
2022, Advances in experimental medicine and biology
DOI:10.1007/978-3-030-87779-8_6
PMID:35146620
|
综述 | 本文综述了人工智能在超声引导区域麻醉中辅助识别解剖结构的应用 | 探讨了计算机视觉在医学图像解释中的潜力,特别是深度学习系统在超声图像解释中的应用 | 需要进一步的临床验证和监管批准 | 探讨人工智能在超声引导区域麻醉中的应用及其对未来学习和实践的影响 | 超声引导区域麻醉中的解剖结构识别 | 计算机视觉 | NA | 深度学习 | 深度学习系统 | 图像 | NA |
119 | 2024-11-21 |
Material decomposition from photon-counting CT using a convolutional neural network and energy-integrating CT training labels
2022-07-18, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ac7d34
PMID:35767986
|
研究论文 | 本文提出了一种利用卷积神经网络和能量积分CT训练标签从光子计数CT进行材料分解的方法 | 通过使用高剂量多能量积分探测器数据提供的分解图作为训练标签,补偿光子计数探测器中的光谱畸变,提高了材料分解的准确性 | 深度学习方法导致了一些模糊,调制传递函数在50%时从1.98线对/毫米降至1.75线对/毫米 | 提高光子计数CT材料分解的准确性 | 光子计数CT和能量积分CT的材料分解 | 计算机视觉 | NA | 光子计数CT(PCCT) | 3D U-net | 图像 | 使用碘和钙小瓶进行测量 |
120 | 2024-11-19 |
Retraction: A comprehensive review of deep learning-based single image super-resolution
2022, PeerJ. Computer science
DOI:10.7717/peerj-cs.621/retraction
PMID:39554485
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |