深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202201-202212] [清除筛选条件]
当前共找到 1719 篇文献,本页显示第 121 - 140 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
121 2024-11-19
Delineating regions of interest for mass spectrometry imaging by multimodally corroborated spatial segmentation
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文提出了一种多模态融合策略,通过结合组织学图像信息来客观选择质谱成像(MSI)中的聚类数量,以实现更准确的感兴趣区域(ROI)划分 本文的创新点在于利用深度学习算法从组织学图像中提取特征谱,并通过多模态一致性来优化聚类数量的选择,从而提高ROI划分的生物学真实性 本文的局限性在于仅在肾脏和肾肿瘤样本上进行了验证,未来需要在更多类型的组织和疾病中进行验证 本文的研究目的是通过多模态融合策略优化质谱成像中的感兴趣区域划分,以促进空间脂质组学、代谢组学和蛋白质组学研究 本文的研究对象是质谱成像数据和相应的组织学图像 数字病理学 肾癌 质谱成像 深度学习 图像 本文使用了小鼠肾脏和肾肿瘤样本进行验证
122 2024-11-19
CoVEffect: interactive system for mining the effects of SARS-CoV-2 mutations and variants based on deep learning
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文介绍了一个基于深度学习的交互系统CoVEffect,用于挖掘SARS-CoV-2突变和变异的影响 提出了一个基于GPT2模型的预测系统,能够从COVID-19相关的大数据语料库中提取突变/变异的影响,并通过CoVEffect网络应用程序实现用户交互和数据标注 目前仅使用了CORD-19语料库中的数据进行训练,可能需要扩展到更多数据源以提高模型的泛化能力 旨在填补关于SARS-CoV-2突变和变异影响的文献信息分散的空白,通过挖掘文献摘要提取相关影响 SARS-CoV-2的突变和变异及其在流行病学、免疫学、临床和病毒动力学方面的影响 自然语言处理 NA GPT2模型 GPT2 文本 使用了CORD-19语料库中的大量摘要进行训练
123 2024-11-19
Deep neural networks with knockoff features identify nonlinear causal relations and estimate effect sizes in complex biological systems
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文介绍了一种名为DAG-deepVASE的新计算方法,通过深度神经网络与knockoff特征结合,用于识别复杂生物系统中的非线性因果关系并估计其效应大小 首次开发了一种能够明确学习非线性因果关系并估计其效应大小的计算方法 NA 开发一种新的计算方法,用于识别复杂生物系统中的非线性因果关系并估计其效应大小 复杂生物系统中的非线性因果关系及其效应大小 机器学习 NA 深度神经网络 深度神经网络 模拟数据和分子及临床数据 涉及多种疾病的数据
124 2024-11-19
MuLan-Methyl-multiple transformer-based language models for accurate DNA methylation prediction
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文介绍了一种基于多重Transformer语言模型的深度学习框架MuLan-Methyl,用于预测DNA甲基化位点 MuLan-Methyl框架结合了5种流行的Transformer语言模型,通过预训练和微调的方式,能够准确预测三种不同类型的DNA甲基化位点 NA 开发一种能够准确预测DNA甲基化位点的深度学习框架 DNA甲基化位点,包括N6-腺苷、N4-胞嘧啶和5-羟甲基胞嘧啶 机器学习 NA Transformer语言模型 Transformer DNA序列 使用了一个基准数据集进行性能评估
125 2024-11-19
Computational prediction of human deep intronic variation
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文研究了计算方法在预测人类基因深内含子变异中的应用 本文比较了SpliceAI等深度学习模型与其他新方法的性能,并提出了新的工具可解释性评估方法 工具在预测可能影响剪接调控元件的变异时表现较差 评估不同计算工具在分析深内含子变异中的性能,并提供实用建议 人类基因的深内含子变异 基因组学 NA 深度学习 深度学习模型 基因序列 使用了多种数据集进行评估
126 2024-11-19
SpheroScan: a user-friendly deep learning tool for spheroid image analysis
2022-12-28, GigaScience IF:11.8Q1
研究论文 开发了一种名为SpheroScan的用户友好型深度学习工具,用于球状体图像分析 SpheroScan利用Mask R-CNN框架进行图像检测和分割,解决了3D球状体分析中缺乏自动化和用户友好工具的问题 NA 开发一种自动化工具,以提高3D球状体分析的重复性和通量 3D球状体图像 计算机视觉 NA 深度学习 Mask R-CNN 图像 使用IncuCyte活细胞分析系统和传统显微镜捕获的球状体图像进行训练
127 2024-11-19
Accurate and fast clade assignment via deep learning and frequency chaos game representation
2022-12-28, GigaScience IF:11.8Q1
研究论文 本文利用频率混沌游戏表示(FCGR)和卷积神经网络(CNN)开发了一种新的方法,用于SARS-CoV-2基因序列的支系分类 本文首次将深度学习和FCGR应用于物种内分类,并开发了CouGaR-g工具,在GISAID测试子集上实现了96.29%的总体准确率,优于类似工具Covidex NA 开发快速且准确的工具,用于区分不同的SARS-CoV-2变体并将其分配到相应的支系 SARS-CoV-2基因序列及其变体 机器学习 冠状病毒病 频率混沌游戏表示(FCGR) 卷积神经网络(CNN) 基因序列 GISAID平台上的数百万个完整基因序列
128 2024-11-19
DeePVP: Identification and classification of phage virion proteins using deep learning
2022-08-11, GigaScience IF:11.8Q1
研究论文 本文介绍了一种基于深度学习的噬菌体病毒颗粒蛋白(PVPs)识别与分类工具DeePVP DeePVP在PVP识别任务中的F1分数比现有最先进工具高出9.05%,在PVP分类任务中的整体准确率比PhANNs高出约3.72% NA 开发一种能够有效识别和分类噬菌体病毒颗粒蛋白的工具 噬菌体病毒颗粒蛋白(PVPs) 机器学习 NA 深度学习 NA 序列 NA
129 2024-11-19
Agricultural plant cataloging and establishment of a data framework from UAV-based crop images by computer vision
2022-06-17, GigaScience IF:11.8Q1
研究论文 本文介绍了一种基于计算机视觉方法的自动化时空识别和作物图像个体化工作流程,用于从无人机获取的作物图像中进行作物目录编制 提出了一个自动化工作流程,用于从无人机图像中识别和个体化作物图像,并应用于大规模时空图像数据集的提取和机器学习模型的训练 未提及具体限制 改进农业中无人机数据的分析和解释 作物图像的时空识别和个体化 计算机视觉 NA 计算机视觉方法 机器学习模型 图像 两个真实世界数据集,一个用于观察糖甜菜中的Cercospora叶斑病,另一个用于花椰菜的收获预测
130 2024-11-19
A novel ground truth multispectral image dataset with weight, anthocyanins, and Brix index measures of grape berries tested for its utility in machine learning pipelines
2022-06-14, GigaScience IF:11.8Q1
研究论文 本文介绍了一个新的葡萄果实多光谱图像数据集,并测试了其在机器学习管道中的实用性 这是首个公开的葡萄果实多光谱图像数据集,每张图像都附有重量、花青素含量和Brix指数的测量数据 NA 验证或反驳研究假设,并进行模型之间的比较 葡萄果实的多光谱图像及其相关测量数据 计算机视觉 NA 多光谱成像 多层感知器(MLP)和三维卷积神经网络(3D-CNN) 图像 1283个多维数组,来自五种不同葡萄品种的果实
131 2024-11-19
NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
2022-05-17, GigaScience IF:11.8Q1
研究论文 本文介绍了一种可扩展的众包方法和数据集,用于乳腺癌中的细胞核分类和分割 提出了一个协作框架,利用医学生和病理学家的众包力量生成高质量的细胞核标签,并创建了NuCLS数据集 NA 开发一种高效的方法来生成用于计算病理学应用的细胞核标签 乳腺癌中的细胞核 数字病理学 乳腺癌 深度学习 NA 图像 超过220,000个细胞核注释
132 2024-11-19
Role of artificial intelligence in MS clinical practice
2022, NeuroImage. Clinical
综述 本文讨论了人工智能在多发性硬化症临床实践中的潜在应用及其局限性 机器学习算法能够自动化重复任务,分析更多数据,并在准确性和可重复性方面超越人类 需要更好地理解AI算法选择的信息,进行多中心和纵向验证,并解决硬件和软件集成问题 探讨人工智能在多发性硬化症临床实践中的应用 多发性硬化症的诊断、预后、疾病和治疗监测,以及MRI协议的改进和病变组织的自动分割 机器学习 多发性硬化症 机器学习 (ML) 和深度学习 (DL) NA 影像数据 NA
133 2024-11-13
Emerging Themes in CryoEM─Single Particle Analysis Image Processing
2022-09-14, Chemical reviews IF:51.4Q1
综述 本文综述了冷冻电镜(CryoEM)中单颗粒分析(SPA)图像处理的主要贡献 强调了算法在不同工作流程步骤中的时间演变,区分了分析方法和深度学习算法 讨论了CryoEM图像处理方法在SPA中仍需解决的新兴问题和挑战 回顾图像处理在CryoEM单颗粒分析重建工作流程中的主要贡献 CryoEM单颗粒分析图像处理算法 计算机视觉 NA 冷冻电镜(CryoEM) 深度学习算法 图像 NA
134 2024-11-08
Improving Sensitivity of Arterial Spin Labeling Perfusion MRI in Alzheimer's Disease Using Transfer Learning of Deep Learning-Based ASL Denoising
2022-06, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本文研究了通过深度学习转移学习方法提高阿尔茨海默病患者动脉自旋标记灌注MRI的灵敏度 提出了一种基于深度学习的动脉自旋标记MRI去噪方法,并通过转移学习将其应用于不同序列和不同人群的数据 研究仅限于特定的MRI序列和人群,可能不适用于所有情况 评估一种基于深度学习的动脉自旋标记MRI去噪方法的转移性 阿尔茨海默病患者和正常对照组的动脉自旋标记灌注MRI数据 计算机视觉 阿尔茨海默病 深度学习 深度学习模型 图像 428名受试者(189名女性),分为三个数据集
135 2024-11-08
POCS-Augmented CycleGAN for MR Image Reconstruction
2022-Jan, Applied sciences (Basel, Switzerland)
研究论文 本文提出了一种结合传统图像重建方法和深度学习的混合图像重建方法,通过将CycleGAN与POCS算法结合,提高了MR图像重建的质量 本文创新地将传统的POCS算法与深度学习网络CycleGAN结合,通过迭代训练提高了图像重建的质量 NA 研究如何通过结合传统图像重建方法和深度学习来提高MR图像重建的质量 MR图像重建 计算机视觉 NA NA CycleGAN 图像 使用了亚采样的磁共振成像数据进行验证
136 2024-11-06
Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于深度学习的模型,用于解释性分类胸部X光图像中的COVID-19、肺炎和肺结核 本文引入了深度学习模型,并结合XAI技术(如Grad-CAM、LIME和SHAP)来解释模型结果,提高了分类的准确性和可解释性 NA 开发一种能够准确分类胸部X光图像中COVID-19、肺炎和肺结核的深度学习模型,并使用XAI技术解释模型结果 胸部X光图像中的COVID-19、肺炎和肺结核 计算机视觉 肺部疾病 深度学习 CNN 图像 7132张胸部X光图像
137 2024-11-06
Design and development of hybrid optimization enabled deep learning model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文设计并开发了一种基于混合优化技术的深度学习模型,用于COVID-19检测,并与其他现有方法进行了比较分析 本文提出了一种新的混合优化算法,结合了Honey Badger优化算法和Jaya算法,用于训练深度神经模糊网络(DNFN),以提高COVID-19检测的准确性、敏感性和特异性 本文未详细讨论模型的计算复杂性和训练时间,且未提供与其他方法在不同数据集上的广泛比较 开发一种高效且安全的COVID-19检测模型,以应对当前检测设备的短缺问题 COVID-19患者的呼吸声音,包括咳嗽、呼吸和语音记录 机器学习 呼吸系统疾病 深度学习 深度神经模糊网络(DNFN) 音频信号 未明确提及具体样本数量
138 2024-11-06
Joint optic disc and cup segmentation using feature fusion and attention
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种名为FAU-Net的深度学习架构,用于联合分割视盘和视杯 通过在U-Net中添加特征融合模块和结合通道与空间注意力机制,提高了视盘和视杯的分割精度 NA 提高青光眼诊断中视盘和视杯的分割精度 视盘和视杯的联合分割 计算机视觉 青光眼 深度学习 FAU-Net 图像 Drishti-GS1, REFUGE, RIM-ONE 和 ODIR 数据集
139 2024-11-06
Leukemia segmentation and classification: A comprehensive survey
2022-11, Computers in biology and medicine IF:7.0Q1
综述 本文综述了白血病的分割与分类的最新深度学习方法及其挑战 本文讨论了利用深度学习方法进行白血病检测的创新点 本文指出了现有白血病检测方法的局限性,如误差大和精度低 探讨白血病检测的最新深度学习方法及其挑战 白血病的分割与分类 计算机视觉 血液疾病 深度学习 NA 图像 NA
140 2024-11-06
Wearable electroencephalography and multi-modal mental state classification: A systematic literature review
2022-11, Computers in biology and medicine IF:7.0Q1
综述 本文系统回顾了可穿戴脑电图在多模态心理状态分类中的应用 本文分析了不同预处理技术、特征和时间序列分类模型的性能,并讨论了未来趋势和实际应用中未充分报道的方面 本文主要基于文献回顾,未提供新的实验数据或模型 探讨可穿戴脑电图在多模态心理状态分类中的最新进展和未来趋势 可穿戴脑电图设备及其在心理状态分类中的应用 脑机接口 NA 脑电图 线性判别分析、决策树、k近邻和支持向量机 时间序列 NA
回到顶部