本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1421 | 2024-08-27 |
Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy
2022-Jan-05, RSC advances
IF:3.9Q2
DOI:10.1039/d1ra06905e
PMID:35425184
|
研究论文 | 本文提出了一种结合Wasserstein生成对抗网络和残差神经网络的方法,用于基于太赫兹光谱的农药检测 | 本文首次将Wasserstein生成对抗网络与残差神经网络结合,用于解决太赫兹光谱数据样本不足的问题,并通过预训练模型技术减少训练参数,避免过拟合 | 深度学习在太赫兹光谱分析中的应用报告较少,主要限制是学习样本不足 | 探索深度学习在农药残留检测中的应用,扩展太赫兹光谱的应用范围 | 基于太赫兹光谱的农药检测,特别是多菌灵的检测 | 机器学习 | NA | 太赫兹光谱 | WGAN-ResNet | 光谱数据 | 具体样本数量未提及 |
1422 | 2024-08-27 |
Deep learning-based breast region extraction of mammographic images combining pre-processing methods and semantic segmentation supported by Deeplab v3
2022, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-228017
PMID:35124595
|
研究论文 | 本文提出了一种基于深度学习的乳腺区域提取方法,结合预处理技术和语义分割模型Deeplab v3+,用于从乳腺X线图像中准确提取乳腺区域。 | 该方法通过中值滤波抑制噪声,CLAHE增强对比度,并使用Deeplab v3+模型进行语义分割,提高了乳腺区域提取的准确性。 | NA | 旨在提高乳腺X线图像中乳腺区域提取的准确性,为计算机辅助诊断系统的发展提供基础。 | 乳腺X线图像中的乳腺区域。 | 计算机视觉 | 乳腺癌 | 中值滤波,CLAHE,Deeplab v3+ | Deeplab v3+ | 图像 | 在mini-MIAS数据集和INbreast数据集上进行了训练和评估。 |
1423 | 2024-08-27 |
Detection of Types of Mental Illness through the Social Network Using Ensembled Deep Learning Model
2022, Computational intelligence and neuroscience
DOI:10.1155/2022/9404242
PMID:35378814
|
研究论文 | 本文通过集成深度学习模型对Reddit社交网络上的情感进行分类,以预测用户的精神疾病类型 | 采用集成深度学习模型,结合卷积神经网络和循环神经网络进行多类别分类,提高了预测准确率 | NA | 通过社交网络分析预测用户的精神疾病类型 | 社交网络上的用户情感及其对应的精神疾病类型 | 机器学习 | NA | 集成深度学习 | CNN和RNN | 文本 | 未具体说明 |
1424 | 2024-08-27 |
Advanced brain aging in multiple system atrophy compared to Parkinson's disease
2022, NeuroImage. Clinical
DOI:10.1016/j.nicl.2022.102997
PMID:35397330
|
研究论文 | 本研究通过深度学习方法评估了多系统萎缩(MSA)和帕金森病(PD)患者的脑部预测年龄差异(PAD),并比较了两种疾病在灰质和白质中的脑老化模式。 | 本研究首次使用深度学习方法分析了MSA和PD患者的脑部影像特征,揭示了两种疾病在脑老化模式上的显著差异。 | 研究样本量较小,可能影响结果的普遍性;未考虑其他可能影响脑老化的因素。 | 旨在开发一种基于影像的生物标志物,以早期区分多系统萎缩和帕金森病。 | 多系统萎缩(MSA)患者、帕金森病(PD)患者和健康对照组(HC)。 | 神经影像学 | 神经退行性疾病 | 磁共振成像(MRI) | 深度学习 | 影像 | MSA患者23例,PD患者33例,健康对照组34例 |
1425 | 2024-08-27 |
Computational and Mathematical Methods in Medicine Prediction of COVID-19 in BRICS Countries: An Integrated Deep Learning Model of CEEMDAN-R-ILSTM-Elman
2022, Computational and mathematical methods in medicine
DOI:10.1155/2022/1566727
PMID:35419081
|
研究论文 | 本文针对COVID-19在BRICS国家的传播情况,构建了一个基于CEEMDAN-R-ILSTM-Elman的集成深度学习预测模型 | 提出了一个集成深度学习预测模型,结合CEEMDAN、ILSTM和Elman神经网络,通过分解-重构-预测-集成的方法提高预测准确性 | 文章未明确提及模型的局限性 | 预测COVID-19在BRICS国家的新增确诊病例数,并分析疫情传播的影响因素 | COVID-19在BRICS国家的传播数据 | 机器学习 | COVID-19 | CEEMDAN, ILSTM, Elman神经网络 | 集成深度学习模型 | 时间序列数据 | 未明确提及具体样本数量 |
1426 | 2024-08-27 |
Combination of Radiological and Clinical Baseline Data for Outcome Prediction of Patients With an Acute Ischemic Stroke
2022, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2022.809343
PMID:35432171
|
研究论文 | 本研究旨在开发结合影像和临床基线数据的预测模型,用于急性缺血性中风患者的治疗结果预测 | 本研究创新地结合了影像学和深度学习图像特征与临床数据,显著改善了良好再灌注的预测 | 尽管结合影像和临床数据在预测再灌注方面有所改善,但在预测mRS评分方面并未显示出显著优势 | 开发结合影像和临床基线数据的预测模型,以提高急性缺血性中风患者治疗结果的预测准确性 | 急性缺血性中风患者 | 数字病理学 | 中风 | 深度学习 | CNN | 影像和临床数据 | 3,279名患者 |
1427 | 2024-08-27 |
A Real-Time Medical Ventilation on Heart Failure Analysis Based on Sleep Apnea Snore and Meta-Analysis
2022, Journal of healthcare engineering
DOI:10.1155/2022/9979413
PMID:35444776
|
研究论文 | 本文通过使用基于LeNet-100 CNN的深度学习技术,对睡眠呼吸暂停打鼾进行实时医疗通气分析,以改善心脏衰竭的诊断和治疗 | 本文采用了LeNet-100 CNN模型进行深度学习,提高了分类准确性,并进行了心脏衰竭的元分析 | NA | 研究旨在通过改进分类准确性来优化睡眠呼吸暂停(OSA)的治疗方法 | 心脏衰竭患者及其睡眠呼吸暂停症状 | 机器学习 | 心血管疾病 | 深度学习 | CNN | 数据集 | 心脏衰竭数据集来自Kaggle网站 |
1428 | 2024-08-27 |
A Survey of Dental Caries Segmentation and Detection Techniques
2022, TheScientificWorldJournal
DOI:10.1155/2022/8415705
PMID:35450417
|
综述 | 本文深入探讨了深度学习在牙科龋齿分割和检测中的应用 | 本文综述了多种基于深度学习的牙科图像分割和检测方法,并根据龋齿类型和X射线图像类型进行了分类 | 本文讨论了现有方法的局限性,并提出了未来改进的方向 | 分析和比较深度学习在牙科龋齿分割和检测中的应用 | 牙科龋齿的分割和检测 | 计算机视觉 | 牙科疾病 | 深度学习 | CNN | 图像 | NA |
1429 | 2024-08-27 |
ADC-Net: An Open-Source Deep Learning Network for Automated Dispersion Compensation in Optical Coherence Tomography
2022, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2022.864879
PMID:35463032
|
研究论文 | 本研究开发了一种用于光学相干断层扫描(OCT)中自动色散补偿的深度学习网络(ADC-Net) | ADC-Net基于改进的UNet架构,采用编码器-解码器流水线,能够对OCT B-扫描进行部分补偿并优化所有视网膜层 | NA | 开发一种深度学习网络用于OCT中的自动色散补偿 | 光学相干断层扫描(OCT)中的色散问题 | 计算机视觉 | NA | 深度学习 | UNet | 图像 | 五输入通道模型被观察为ADC-Net训练的最佳选择 |
1430 | 2024-08-27 |
Dual-Branch Convolutional Neural Network Based on Ultrasound Imaging in the Early Prediction of Neoadjuvant Chemotherapy Response in Patients With Locally Advanced Breast Cancer
2022, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2022.812463
PMID:35463368
|
研究论文 | 本研究开发了一种基于深度学习的新方法——双分支卷积神经网络(DBNN),利用超声图像早期预测局部晚期乳腺癌患者对新辅助化疗(NAC)的反应 | 提出了一种双分支卷积神经网络(DBNN),通过特征共享和调整不同分支的权重,强调了不同阶段数据的重要性,并结合NAC前后的超声图像信息,提高了预测病理完全反应(pCR)的诊断性能 | 本研究为回顾性研究,样本量相对较小,且仅限于局部晚期乳腺癌患者 | 开发一种新的方法,利用超声图像早期预测乳腺癌患者对新辅助化疗的反应,以指导治疗决策 | 局部晚期乳腺癌患者对新辅助化疗的早期反应 | 机器学习 | 乳腺癌 | 超声成像 | 双分支卷积神经网络(DBNN) | 图像 | 114名女性患者 |
1431 | 2024-08-27 |
Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC
2022, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2022.828560
PMID:35464416
|
研究论文 | 本文开发了一种基于深度学习算法的非侵入性测量系统,用于预测非小细胞肺癌(NSCLC)中的PD-L1表达和生存结果 | 本研究首次提出了一种结合深度学习、影像组学和临床特征的AI系统,用于非侵入性地评估PD-L1表达和生存结果 | NA | 开发一种非侵入性的AI系统,用于测量PD-L1表达特征(ES)并评估NSCLC患者的生存结果 | 非小细胞肺癌(NSCLC)患者的PD-L1表达和生存结果 | 机器学习 | 肺癌 | 深度学习 | 3D ResNet | CT图像 | 1135名非小细胞肺癌(NSCLC)患者 |
1432 | 2024-08-27 |
Robot Learning From Randomized Simulations: A Review
2022, Frontiers in robotics and AI
IF:2.9Q2
DOI:10.3389/frobt.2022.799893
PMID:35494543
|
综述 | 本文综述了机器人从随机化模拟中学习的方法,特别是关注于一种名为“域随机化”的技术 | 介绍了通过域随机化技术来克服模拟与现实之间的差异,即“现实差距” | 所有模拟器都是基于模型构建的,因此不可避免地存在不完美之处 | 探讨如何修改模拟器以促进机器人控制策略的学习,并克服模拟与现实之间的不匹配 | 机器人学习方法及其在模拟到现实环境中的应用 | 机器人学 | NA | 域随机化 | 深度学习 | 模拟数据 | NA |
1433 | 2024-08-27 |
Social media text analytics of Malayalam-English code-mixed using deep learning
2022, Journal of big data
IF:8.6Q1
DOI:10.1186/s40537-022-00594-3
PMID:35495077
|
研究论文 | 本文研究了马拉雅拉姆语-英语混合文本的社交媒体文本分析,重点是识别攻击性语言和情感分析 | 提出了一个框架,结合了嵌入方法(Word2Vec和FastText)和深度学习算法(单/双向模型、混合模型和转换器方法),并进行了超参数优化 | 未明确提及 | 旨在提高马拉雅拉姆语-英语混合文本在社交媒体中的处理能力 | 马拉雅拉姆语-英语混合数据集 | 自然语言处理 | NA | 深度学习 | 单/双向模型、混合模型、转换器 | 文本 | FIRE 2020数据集和EACL 2021数据集 |
1434 | 2024-08-27 |
Research on Intelligent Target Tracking Algorithm Based on MDNet under Artificial Intelligence
2022, Computational intelligence and neuroscience
DOI:10.1155/2022/1550543
PMID:35498174
|
研究论文 | 本文介绍了一种基于MDNet的目标跟踪方法,通过引入两种注意力机制来提取和整合更好的特征,并使用案例分区减少跟踪模块的投入和最小化网络大小,以防止结果恶化 | 引入了两种注意力机制来提取和整合更好的特征,并使用案例分区技术来优化网络结构 | 未提及具体的局限性 | 研究基于MDNet的智能目标跟踪算法 | 目标跟踪技术 | 计算机视觉 | NA | 深度学习 | MDNet | 图像 | 未提及具体样本数量 |
1435 | 2024-08-26 |
Semantic segmentation of multispectral photoacoustic images using deep learning
2022-Jun, Photoacoustics
IF:7.1Q1
DOI:10.1016/j.pacs.2022.100341
PMID:35371919
|
研究论文 | 本文提出了一种基于深度学习的语义分割方法,用于多光谱光声图像的分析 | 利用手动标注的光声和超声图像数据训练深度学习分割算法,实现自动组织分割 | NA | 促进光声成像技术的临床转化 | 多光谱光声图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 16名健康志愿者 |
1436 | 2024-08-26 |
A practical evaluation of machine learning for classification of ultrasound images of ovarian development in channel catfish (Ictalurus punctatus)
2022-Apr-15, Aquaculture (Amsterdam, Netherlands)
|
研究论文 | 本研究评估了多种机器学习方法在分类超声图像中的卵巢发育情况的应用,特别是在鲶鱼养殖中的应用 | 首次系统评估了多种机器学习方法在鲶鱼卵巢发育超声图像分类中的应用 | 深度学习方法在某些分类问题上的表现不如传统机器学习方法 | 评估机器学习方法在鲶鱼卵巢发育超声图像分类中的可行性 | 鲶鱼卵巢发育的超声图像 | 机器学习 | NA | 深度学习方法,传统机器学习方法 | CNN | 图像 | 931张超声图像 |
1437 | 2024-08-26 |
Identification of antibiotic resistance and virulence-encoding factors in Klebsiella pneumoniae by Raman spectroscopy and deep learning
2022-04, Microbial biotechnology
IF:4.8Q1
DOI:10.1111/1751-7915.13960
PMID:34843635
|
研究论文 | 本研究利用拉曼光谱和深度学习技术,开发了一种卷积神经网络(CNN)模型,用于快速识别肺炎克雷伯菌中的抗生素抗性和毒力编码因子 | 本研究首次将拉曼光谱与深度学习结合,用于快速识别肺炎克雷伯菌的抗生素抗性和毒力编码因子,相比传统的支持向量机(SVM)和逻辑回归(LR)模型,提供了更高的准确性 | NA | 开发一种快速识别肺炎克雷伯菌抗生素抗性和毒力编码因子的方法,以制定合理的治疗计划 | 肺炎克雷伯菌的抗生素抗性和毒力编码因子 | 机器学习 | NA | 拉曼光谱 | CNN | 光谱数据 | 71株肺炎克雷伯菌 |
1438 | 2024-08-26 |
Deep learning versus iterative image reconstruction algorithm for head CT in trauma
2022-Apr, Emergency radiology
IF:1.7Q3
DOI:10.1007/s10140-021-02012-2
PMID:34984574
|
研究论文 | 比较深度学习图像重建算法(DLIR)与自适应统计迭代重建算法(ASiR-V)在非对比创伤头部CT中的图像质量 | DLIR算法在图像噪声、信噪比和对比噪声比方面表现出显著优势,尤其是DLIR-M和DLIR-H | 阅读者之间的评分一致性在不同经验水平的阅读者之间表现不一,从较差到良好不等 | 评估和比较DLIR与ASiR-V在创伤头部CT图像重建中的效果 | 94名连续创伤患者的头部CT扫描图像 | 计算机视觉 | NA | 深度学习图像重建算法(DLIR),自适应统计迭代重建算法(ASiR-V) | CNN | 图像 | 94名创伤患者 |
1439 | 2024-08-26 |
Novel-view X-ray projection synthesis through geometry-integrated deep learning
2022-04, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2022.102372
PMID:35131701
|
研究论文 | 本文提出了一种基于深度学习的几何集成投影合成框架(DL-GIPS),用于从特定视角的X射线投影图像生成新视角的X射线投影图像 | 本文提出的DL-GIPS模型能够从源视角投影中提取几何和纹理特征,并通过几何变换适应视角变化,最终合成目标视角的X射线投影 | NA | 研究如何通过深度学习技术从特定视角的X射线投影图像生成新视角的X射线投影图像,以减少实际投影测量的需求 | X射线投影图像 | 计算机视觉 | NA | 深度学习 | DL-GIPS | 图像 | 使用肺部成像案例进行验证 |
1440 | 2024-08-26 |
Brain Tumor Imaging: Applications of Artificial Intelligence
2022-Apr, Seminars in ultrasound, CT, and MR
DOI:10.1053/j.sult.2022.02.005
PMID:35339256
|
综述 | 本文综述了人工智能在脑肿瘤影像学中的应用,特别是机器学习和深度学习在神经肿瘤学中的潜在用途 | 人工智能在脑肿瘤影像学中的应用,包括分子分类、鉴别和治疗反应评估 | 需要更多多中心规模的研究和标准化的图像处理流程,才能在常规临床决策中引入人工智能 | 探讨人工智能在神经肿瘤学中的应用,特别是脑肿瘤的分子分类、鉴别和治疗反应评估 | 脑肿瘤的影像学特征和人工智能模型的应用 | 计算机视觉 | 脑肿瘤 | 机器学习, 深度学习 | NA | 影像 | NA |