深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202201-202212] [清除筛选条件]
当前共找到 1802 篇文献,本页显示第 1541 - 1560 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1541 2024-08-26
Deep Learning-Based Electrocardiograph in Evaluating Radiofrequency Ablation for Rapid Arrhythmia
2022, Computational and mathematical methods in medicine
研究论文 本研究旨在分析基于深度学习的电生理图(ECG)在评估射频消融治疗快速性心律失常疗效中的重要作用 使用基于深度学习的卷积神经网络模型对ECG检查指标进行量化分析 NA 评估射频消融治疗快速性心律失常的疗效 158名接受射频消融治疗的快速性心律失常患者 机器学习 心血管疾病 深度学习 卷积神经网络(CNN) 电生理图(ECG) 158名患者,分为有效治疗组(142例)和无效治疗组(16例) NA NA NA NA
1542 2024-08-26
Kidney Tumor Segmentation Based on FR2PAttU-Net Model
2022, Frontiers in oncology IF:3.5Q2
研究论文 本文提出基于FR2PAttU-Net的深度学习模型,用于帮助医生快速高效地处理肾脏CT图像,节省医疗资源 使用R2Att网络改进U-Net的'U'结构,增加并行卷积,构建FR2PAttU-Net模型,提高模型对不同尺度图像特征的适应性,避免网络加深导致学习有价值特征的失败 NA 提高肾脏肿瘤从肾脏CT图像中的分割效果 肾脏肿瘤的CT图像分割 计算机视觉 肾脏肿瘤 深度学习 FR2PAttU-Net 图像 使用KiTS19数据集,通过增强小样本数据集以平衡样本数据集 NA NA NA NA
1543 2024-08-25
Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays
2022-Apr, Ingenierie et recherche biomedicale : IRBM = Biomedical engineering and research
研究论文 本文提出了一种基于深度迁移学习的自动化方法,用于通过胸部X光片检测COVID-19感染 使用极端版本的Inception(Xception)模型进行深度迁移学习,显著提高了检测性能 目前仅在胸部X光片上应用了该方法,尚未在其他类型的影像数据上进行验证 开发一种自动化的深度迁移学习方法,以加速COVID-19感染的检测 COVID-19感染的胸部X光片 计算机视觉 COVID-19 深度迁移学习 Xception 图像 NA NA NA NA NA
1544 2024-08-25
Synthetic feature pairs dataset and siamese convolutional model for image matching
2022-Apr, Data in brief IF:1.0Q3
研究论文 本文通过使用相同的特征块创建一个新的合成特征对大型数据集,利用孪生卷积模型进行特征描述和匹配,完善了整个匹配流程 本文提出的数据集避免了使用其他算法提取特征块时的错误检测或手动标记的不准确性,并且可以控制合成特征块的内容和几何及光度参数,从而控制模型的不变性 NA 旨在通过合成特征对数据集和孪生卷积模型改进图像匹配技术 合成特征对数据集和孪生卷积模型 计算机视觉 NA 孪生卷积模型 CNN 图像 大型合成特征对数据集 NA NA NA NA
1545 2024-08-25
Improved image classification explainability with high-accuracy heatmaps
2022-Mar-18, iScience IF:4.6Q1
研究论文 本文提出了一种名为金字塔定位网络(PYLON)的深度学习模型,用于提高类激活图(CAM)产生的热图分辨率,从而在图像分类中提供更精确的位置解释 PYLON模型能够显著提高CAM热图的质量,并能精确地定位小物体的位置,且不需要专家对物体位置进行标注,仅使用图像级别的标签进行训练 NA 旨在提高深度学习模型在图像分类中的可解释性,特别是在医疗影像等关键应用中 深度学习模型在图像分类中的可解释性和热图的精确性 计算机视觉 NA 深度学习 PYLON 图像 NA NA NA NA NA
1546 2024-08-25
Application of machine learning in understanding plant virus pathogenesis: trends and perspectives on emergence, diagnosis, host-virus interplay and management
2022-03-09, Virology journal IF:4.0Q2
综述 本文综述了机器学习在植物病毒发病机制、诊断、宿主-病毒相互作用及管理方面的应用趋势和前景。 机器学习方法能够处理高维大数据,提高植物病毒疾病的早期诊断准确性,并有助于更好地理解宿主-病毒相互作用。 NA 探讨机器学习在植物病毒学领域的应用,特别是在病毒疾病的诊断、宿主-病毒相互作用和病毒出现方面的应用。 植物病毒及其在农业中的影响。 机器学习 NA 机器学习 深度学习算法 大数据 NA NA NA NA NA
1547 2024-08-25
Personalized wearable electrodermal sensing-based human skin hydration level detection for sports, health and wellbeing
2022-03-08, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于机器学习和深度学习的个性化穿戴式电皮肤传感系统,用于非侵入性地监测人体皮肤的水分水平 本文引入了混合(ML+DL)模型,特别是混合Bi-LSTM算法,以提高水分水平估计的准确性 NA 开发一种有效的非侵入性水分监测系统,以避免潜在的健康并发症和死亡风险 人体皮肤的水分水平 机器学习 NA 电皮肤反应(GSR) Bi-LSTM 数据 数据收集包括三种不同的水分状态(水分充足、轻度脱水和极度轻度脱水)和三种不同的身体姿势(坐、站和走) NA NA NA NA
1548 2024-08-25
A deep learning-driven low-power, accurate, and portable platform for rapid detection of COVID-19 using reverse-transcription loop-mediated isothermal amplification
2022-03-08, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种基于深度学习的便携式、准确、低成本设备,用于通过逆转录环介导等温扩增(RT-LAMP)快速检测COVID-19 该设备采用3D打印技术,仅需5伏交流-直流适配器供电,可同时进行16次RT-LAMP反应,并可重复使用。实验方案设计消除了对单独昂贵RNA提取设备的需求,并防止样品蒸发 NA 开发一种快速、准确、便携的COVID-19检测设备 COVID-19的快速检测 机器学习 COVID-19 RT-LAMP 深度学习系统 颜色数据 250个RT-LAMP临床样本 NA NA NA NA
1549 2024-08-25
Pretrained transformer framework on pediatric claims data for population specific tasks
2022-03-07, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种名为Claim Pre-Training (Claim-PT)的预训练框架,该框架首先在整个儿科索赔数据集上进行训练,然后针对每个特定人群任务进行区分性微调,以解决特定人群任务数据稀缺的问题 提出了Claim-PT框架,通过预训练和任务感知微调实现了有效的知识转移,并能在小规模患者群体中充分训练深度学习模型 NA 开发一种能够在特定人群任务中有效利用儿科索赔数据的预训练框架 儿科索赔数据和特定人群的医疗任务 机器学习 NA 预训练和微调技术 Transformer 电子健康记录(EHR)数据 超过一百万患者记录 NA NA NA NA
1550 2024-08-25
A Hybrid Model for Driver Emotion Detection Using Feature Fusion Approach
2022-03-06, International journal of environmental research and public health
研究论文 本文提出了一种混合模型,用于在不同姿态、遮挡和光照条件下检测驾驶员的六到七种情绪,通过融合Gabor和LBP特征并结合支持向量机和卷积神经网络进行分类 开发了一种新颖的混合网络架构,结合深度神经网络和支持向量机,以提高情绪检测的准确性 NA 旨在通过监测驾驶员的情绪来预测其行为,从而避免交通事故 驾驶员的情绪 机器学习 NA 特征融合 混合模型(深度神经网络和支持向量机) 图像 使用了FER 2013、CK+、KDEF和KMU-FED数据集 NA NA NA NA
1551 2024-08-25
Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease
2022-03-03, Scientific reports IF:3.8Q1
研究论文 本文通过模拟研究探讨了联邦学习在多中心心血管疾病影像诊断中的应用 首次在心血管磁共振成像领域进行联邦学习的模拟研究,并探索了两种不同的形状先验信息整合方法和四种数据增强设置 研究样本量较小,仅包含180个来自四个中心的研究对象 验证联邦学习在多中心影像诊断中的有效性和优势 心血管疾病中的肥厚型心肌病诊断 机器学习 心血管疾病 联邦学习 3D-CNN 影像 180个研究对象 NA NA NA NA
1552 2024-08-25
Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry
2022-Mar-03, International journal of molecular sciences IF:4.9Q2
综述 本文回顾了从1990年代的自组织映射到当前深度化学中神经网络在药物设计中的应用 探讨了无监督学习在深度化学中的潜在应用,特别是自组织映射的高效性 化学领域中可用的测量属性数据仍然有限,影响了深度化学的效率 探索神经网络在药物设计中的应用,特别是深度学习和无监督学习方法 神经网络在药物设计中的应用,特别是自组织映射和深度学习 机器学习 NA 深度学习 神经网络 分子表示 NA NA NA NA NA
1553 2024-08-25
A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images
2022-Mar-02, NPJ precision oncology IF:6.8Q1
研究论文 本文开发了一种名为H&E分子神经网络(HEMnet)的深度学习模型,用于从组织病理学图像中识别癌细胞 HEMnet利用免疫组织化学作为初始分子标签,通过分子转移方法成功生成了大量训练图像,并能以更高分辨率预测癌细胞 NA 提高癌症诊断的准确性 从组织病理学图像中识别癌细胞 机器学习 结直肠癌 深度学习 神经网络 图像 21,939个肿瘤图像和8,782个正常图像 NA NA NA NA
1554 2024-08-25
Artificial intelligence to detect malignant eyelid tumors from photographic images
2022-Mar-02, NPJ digital medicine IF:12.4Q1
研究论文 本文开发了一种基于卷积神经网络和深度学习分类网络的人工智能系统,用于从摄影图像中自动检测和区分恶性与良性眼睑肿瘤 该系统能够自动定位眼睑肿瘤并区分恶性与良性,其性能与资深眼科医生相当 NA 促进恶性眼睑肿瘤的早期检测和治疗 眼睑肿瘤的恶性与良性区分 计算机视觉 眼睑肿瘤 卷积神经网络 CNN 图像 1,417张图像来自851名患者 NA NA NA NA
1555 2024-08-25
Generating 3D molecules conditional on receptor binding sites with deep generative models
2022-Mar-02, Chemical science IF:7.6Q1
research paper 本文首次描述了一种基于深度学习的系统,用于生成以受体结合位点为条件的3D分子结构 本研究首次应用深度学习生成预测与蛋白质结合的3D分子,通过条件变分自编码器和原子密度网格表示法来实现 NA 旨在通过深度学习找到与特定目标蛋白质结合的小分子,实现基于结构的药物发现 3D分子结构及其与蛋白质的结合能力 machine learning NA 条件变分自编码器 VAE 原子密度网格 涉及交叉对接的蛋白质-配体结构 NA NA NA NA
1556 2024-08-25
Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products
2022-Mar, Synthetic and systems biotechnology IF:4.4Q1
综述 本文综述了植物UDP-糖基转移酶(UGTs)在植物天然产物糖基化生物合成中的功能、系统发育分布、催化多样性及工程应用 讨论了利用多组学技术和深度学习预测模型识别新型UGT候选物,以及通过理性设计和定向进化工程策略改进UGT功能的最新进展 NA 阐明UGT功能,为代谢工程中生产药物前体、化妆品、营养素和甜味剂的糖基化提供必要步骤 植物UGTs及其在植物天然产物糖基化生物合成中的应用 代谢工程 NA 多组学技术,深度学习 深度学习预测模型 NA NA NA NA NA NA
1557 2024-08-25
Quantitative analysis of the effect of radiation on mitochondria structure using coherent diffraction imaging with a clustering algorithm
2022-Mar-01, IUCrJ IF:2.9Q3
研究论文 本文通过使用基于深度学习的聚类算法,对生物材料在X射线源下的相干衍射成像(CDI)中的辐射损伤和低信噪比问题进行了定量分析 引入了一种基于深度学习的聚类算法,用于从噪声衍射图案中获得准确和一致的图像重建 NA 研究X射线辐射对软生物材料的影响,并提高生物材料的成像质量 人类胚胎肾细胞的线粒体 数字病理学 NA 相干衍射成像(CDI) 聚类算法 图像 人类胚胎肾细胞的线粒体 NA NA NA NA
1558 2024-08-25
Grayscale medical image segmentation method based on 2D&3D object detection with deep learning
2022-02-27, BMC medical imaging IF:2.9Q2
研究论文 本文提出了一种结合阈值法和深度学习的2D&3D目标检测技术的新型灰度医学图像分割方法 该方法通过使用2D目标检测网络确定感兴趣区域,并将裁剪图像中的像素转换为点云,然后应用3D目标检测网络获取边界框,从而实现灰度医学图像的精确分割 该方法需要大量的训练数据来支持复杂的深度学习架构 开发一种有效的灰度医学图像分割方法,以提高临床计算机辅助诊断的准确性 灰度医学图像的分割 计算机视觉 NA 深度学习 2D&3D目标检测网络 图像 三组灰度医学图像数据集 NA NA NA NA
1559 2024-08-25
Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning
2022-02-25, Nature communications IF:14.7Q1
研究论文 本文提出了一种可解释的意识指标(ECI),利用深度学习技术来区分意识的不同组成部分,即觉醒(清醒状态)和意识(主观体验) 首次报道了能够区分觉醒和意识这两个意识组成部分的神经生理学指标 NA 开发一种新的方法来量化不同生理、药理和病理条件下的觉醒和意识 使用脑电图(EEG)响应于经颅磁刺激,研究了睡眠、全身麻醉和严重脑损伤等多种条件下的觉醒和意识 神经科学 脑损伤 脑电图(EEG) 深度学习 脑电图数据 共涉及105个样本,包括睡眠(6个)、全身麻醉(16个)、严重脑损伤(34个)以及休息状态下的全身麻醉(15个)和严重脑损伤(34个) NA NA NA NA
1560 2024-08-25
Winter wheat yield prediction using convolutional neural networks from environmental and phenological data
2022-02-25, Scientific reports IF:3.8Q1
研究论文 本研究利用环境数据和表型数据,通过卷积神经网络(CNN)模型预测冬季小麦产量 提出了一种使用一维卷积操作的卷积神经网络(CNN)模型,有效捕捉环境变量的时间依赖性 NA 分析机器学习和深度学习方法在冬季小麦产量预测中的表现 冬季小麦产量预测 机器学习 NA 卷积神经网络(CNN) CNN 环境数据和表型数据 271个德国县从1999年到2019年的数据 NA NA NA NA
回到顶部