本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1601 | 2024-08-07 |
Effect of head motion-induced artefacts on the reliability of deep learning-based whole-brain segmentation
2022-Jan-31, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-05583-3
PMID:35102199
|
研究论文 | 研究深度学习方法在磁共振成像中对头部运动引起的伪影的鲁棒性 | 深度学习方法在磁共振成像中对头部运动引起的伪影表现出更高的鲁棒性 | NA | 探讨深度学习方法在磁共振成像中对头部运动引起伪影的鲁棒性 | 磁共振成像中的头部运动伪影对深度学习方法的影响 | 计算机视觉 | NA | 磁共振成像 | 神经网络模型 | 图像 | 110名参与者 |
1602 | 2024-08-07 |
Using deep learning models to analyze the cerebral edema complication caused by radiotherapy in patients with intracranial tumor
2022-Jan-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-05455-w
PMID:35091636
|
研究论文 | 利用深度学习模型分析接受放射治疗后颅内肿瘤患者脑水肿并发症的图像分割和标准结果 | 采用Mask R-CNN模型和区域生长算法进行脑水肿图像分割,并通过DICE、IoU和VOE指数评估分割效果 | NA | 研究放射治疗后颅内肿瘤患者脑水肿的图像分割和临床描述标准 | 颅内肿瘤患者在接受计算机刀立体定向放射手术后的脑水肿并发症 | 计算机视觉 | 颅内肿瘤 | 深度学习 | Mask R-CNN | 图像 | 接受计算机刀立体定向放射手术的颅内肿瘤患者,包括治疗前和四个月随访的图像 |
1603 | 2024-08-07 |
Identification of a clonal population of Aspergillus flavus by MALDI-TOF mass spectrometry using deep learning
2022-Jan-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-05647-4
PMID:35091651
|
研究论文 | 本研究利用深度学习技术,通过MALDI-TOF质谱法识别Aspergillus flavus的克隆群体 | 首次使用卷积神经网络(CNN)通过MALDI-TOF质谱技术识别同一物种内的特定克隆 | 在较旧且需要更换激光的设备上,识别准确率较低 | 探索现有MALDI-TOF设备是否能从同一物种的多种分离株中识别特定克隆 | Aspergillus flavus的克隆分离株 | 机器学习 | NA | MALDI-TOF质谱法 | CNN | 质谱数据 | 包括19个克隆分离株和55个来自不同来源的A. flavus分离株 |
1604 | 2024-08-07 |
Classification of brain tumours in MR images using deep spatiospatial models
2022-Jan-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-05572-6
PMID:35087174
|
研究论文 | 本文使用深度时空模型ResNet (2+1)D和ResNet混合卷积来分类MR图像中的脑肿瘤 | 采用时空模型作为“时空空间”模型,能够学习特定的空间和时间关系,同时降低计算成本 | NA | 研究如何使用深度学习方法提高脑肿瘤在MR图像中的分类准确性 | 脑肿瘤的分类 | 计算机视觉 | 脑肿瘤 | 深度学习 | ResNet (2+1)D, ResNet混合卷积 | 图像 | 使用开放数据集,包含可靠的注释 |
1605 | 2024-08-07 |
Automated evaluation of retinal pigment epithelium disease area in eyes with age-related macular degeneration
2022-Jan-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-05006-3
PMID:35042966
|
研究论文 | 开发了一种两步软件,通过分析荧光素血管造影(FA)图像中的早期高荧光区域,实现对视网膜色素上皮(RPE)疾病区域变化的目标和高效量化 | 利用基于深度学习的判别方法提取异常区域,并通过自动化程序对二值化提取区域进行评分,提高了评估的准确性和效率 | NA | 解决缺乏标准协议的问题,实现对RPE疾病区域变化的客观量化 | 视网膜色素上皮(RPE)疾病区域 | 数字病理学 | 年龄相关性黄斑变性 | 深度学习 | NA | 图像 | NA |
1606 | 2024-08-07 |
Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling
2022-Jan-17, Molecules (Basel, Switzerland)
DOI:10.3390/molecules27020570
PMID:35056884
|
研究论文 | 本文探讨了通过深度生成模型系统设计共价蛋白激酶抑制剂的方法 | 结合基于片段的设计和深度生成模型,增强了三维药效团筛选,为药物化学应用提供了一种结合知识元素和深度学习的方法 | NA | 开发一种计算方法,用于设计共价蛋白激酶抑制剂 | 共价蛋白激酶抑制剂的设计 | 机器学习 | 炎症性疾病,白血病 | 深度生成模型 | 深度学习模型 | 化学结构数据 | 具体样本数量未明确 |
1607 | 2024-08-07 |
Rapid video-based deep learning of cognate versus non-cognate T cell-dendritic cell interactions
2022-Jan-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-021-04286-5
PMID:35017558
|
研究论文 | 本文展示了使用深度学习快速分类抗原特异性CD8 T细胞视频的能力 | 该方法通过深度学习模型区分了同源和非同源T细胞与树突状细胞的交互动态,并展示了比传统图像分析技术更高的分类准确性 | NA | 理解免疫和耐受性,并开发癌症和自身免疫疾病的治疗方法 | 抗原特异性T细胞与树突状细胞的同源交互 | 机器学习 | 癌症, 自身免疫疾病 | 深度学习 | NA | 视频 | OT-I小鼠的高亲和力抗原特异性CD8 T细胞 |
1608 | 2024-08-07 |
Denoising of pediatric low dose abdominal CT using deep learning based algorithm
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0260369
PMID:35061701
|
研究论文 | 本文评估了一种基于深度学习的方法生成的标准剂量CT图像,该方法使用未配对的低剂量CT和标准剂量CT图像进行训练 | 使用生成对抗网络框架训练未配对数据集,能够从原始低剂量CT图像生成虚拟标准剂量CT图像 | NA | 评估深度学习方法生成的标准剂量CT图像的质量 | 低剂量CT和标准剂量CT图像 | 计算机视觉 | NA | 生成对抗网络 | 生成对抗网络 | 图像 | 训练集包含42张低剂量CT和42张标准剂量CT图像,验证集包含41张低剂量CT图像,测试集包含33张低剂量CT图像 |
1609 | 2024-08-07 |
DeLUCS: Deep learning for unsupervised clustering of DNA sequences
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0261531
PMID:35061715
|
研究论文 | 本文介绍了一种无需序列比对、序列同源性或分类标识的深度学习方法DeLUCS,用于无监督DNA序列聚类 | DeLUCS使用频率混沌游戏表示(FCGR)和生成模拟序列FCGR来自我学习数据模式,通过优化多个神经网络实现聚类,显著优于传统的K-means++和高斯混合模型方法 | NA | 开发一种新的深度学习方法,用于无监督DNA序列聚类 | DNA序列的聚类 | 机器学习 | NA | 深度学习 | 神经网络 | DNA序列 | 包括2,500个完整的脊椎动物线粒体基因组、3,200个随机选择的400 kbp长的细菌基因组片段和三个平均1,300个序列的病毒基因组及基因数据集 |
1610 | 2024-08-07 |
Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0262501
PMID:35120138
|
研究论文 | 本文提出了一种基于特征选择、卷积神经网络和双向门控循环单元的混合股票预测模型FS-CNN-BGRU | 该模型结合了特征选择、卷积神经网络和双向门控循环单元,能够更好地处理具有时间序列属性的数据,并在实验中显示出优于其他单一模型的性能 | NA | 提出一种新的混合股票预测模型,以提高预测性能 | 股票市场的预测 | 机器学习 | NA | 卷积神经网络,双向门控循环单元 | CNN, BGRU | 时间序列数据 | NA |
1611 | 2024-08-07 |
No sonographer, no radiologist: New system for automatic prenatal detection of fetal biometry, fetal presentation, and placental location
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0262107
PMID:35139093
|
研究论文 | 本文开发了一种自动化的诊断框架,用于在没有经验丰富的超声技师或解读提供者的情况下,评估胎儿生物测量、胎儿体位和胎盘位置 | 该系统使用标准化体积扫描成像(VSI)协议和深度学习算法(U-Net),无需专业人员即可进行超声成像和诊断评估 | 该系统在胎盘位置的诊断准确性为76.7%,相对较低 | 旨在提高农村和资源匮乏社区的超声成像和诊断的可及性 | 胎儿生物测量、胎儿体位和胎盘位置的自动评估 | 计算机视觉 | NA | 深度学习算法(U-Net) | U-Net | 图像 | 在秘鲁进行的超声检查,由没有超声经验的操作者进行,接受了8小时的培训 |
1612 | 2024-08-07 |
Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer's disease
2022-11-29, Cell reports
IF:7.5Q1
DOI:10.1016/j.celrep.2022.111717
PMID:36450252
|
研究论文 | 本文介绍了一种基于网络拓扑的深度学习框架NETTAG,用于将全基因组关联研究(GWAS)和多组学发现转化为阿尔茨海默病(AD)的病理生物学和药物再利用 | NETTAG框架利用非编码GWAS位点对数量性状位点、增强子、CpG岛、启动子区域、开放染色质和启动子侧翼区域的影响,结合蛋白质-蛋白质相互作用网络,识别与AD相关的风险基因 | NA | 旨在将人类遗传发现转化为AD的病理生物学和治疗发现 | 阿尔茨海默病(AD)的病理生物学和药物再利用 | 机器学习 | 阿尔茨海默病 | 深度学习 | NETTAG | 基因组数据 | 1000万个体 |
1613 | 2024-08-07 |
Benchmarking Deep Learning Models for Tooth Structure Segmentation
2022-10, Journal of dental research
IF:5.7Q1
DOI:10.1177/00220345221100169
PMID:35686357
|
研究论文 | 本文通过系统比较多种深度学习架构在牙齿结构分割任务上的表现,为模型开发提供指导 | 首次在牙科领域进行全面的深度学习模型基准测试,并发现使用预训练权重初始化的模型在牙科放射图像分析中表现更优 | 研究仅限于牙齿结构分割任务,未涵盖牙科领域的其他任务 | 旨在通过基准测试为牙科领域的深度学习模型开发提供指导 | 牙齿结构(牙釉质、牙本质、牙髓、填充物、牙冠)的分割 | 计算机视觉 | NA | 深度学习 | U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyramid Scene Parsing Network, Mask Attention Network | 图像 | 1,625张人工标注的牙科咬翼放射图像 |
1614 | 2024-08-07 |
Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs
2022-Sep, Clinical oral investigations
IF:3.1Q1
DOI:10.1007/s00784-022-04552-4
PMID:35608684
|
研究论文 | 本研究旨在开发和验证一种基于深度学习的卷积神经网络(CNN),用于自动检测和分类受牙本质发育不全(MIH)影响的牙齿 | 开发了一种基于深度学习的卷积神经网络(CNN),能够自动检测和分类受MIH影响的牙齿,具有较高的诊断准确性 | CNN在健康牙齿上的表现优于受MIH影响的牙齿,需要进一步提高准确性 | 开发和验证一种自动检测和分类受MIH影响牙齿的深度学习模型 | 受牙本质发育不全(MIH)影响的牙齿 | 计算机视觉 | NA | 卷积神经网络(CNN) | ResNeXt-101-32×8d | 图像 | 3241张口腔内图像,包括2596张训练图像和649张测试图像 |
1615 | 2024-08-07 |
Application of deep learning in teeth identification tasks on panoramic radiographs
2022-Jul-01, Dento maxillo facial radiology
DOI:10.1259/dmfr.20210504
PMID:35143260
|
综述 | 本文综述了人工智能在全景放射图像上牙齿识别任务中的应用和发展 | 探讨了深度学习模型在牙齿识别任务中的性能 | 由于报告性能指标的异质性,无法进行meta分析 | 评估和比较深度学习模型在全景放射图像上牙齿识别任务中的表现 | 深度学习模型在全景放射图像上牙齿识别任务的应用 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 共282篇文章,其中13篇相关文章被纳入综述 |
1616 | 2024-08-07 |
Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency
2022-06, Journal of periodontal & implant science
DOI:10.5051/jpis.2104080204
PMID:35775697
|
研究论文 | 本研究评估并比较了牙科专业人员在使用和不使用深度学习(DL)算法的情况下,对不同类型牙科植入系统(DISs)的分类准确性 | 使用DL算法显著提高了牙科专业人员对DISs的平均分类准确性 | NA | 评估和比较牙科专业人员在有和无DL算法辅助下对牙科植入系统分类的准确性 | 牙科专业人员对不同类型牙科植入系统的分类准确性 | 机器学习 | NA | 深度学习 | DL算法 | 图像 | 包括5名认证牙周病专家、8名牙周病学住院医师和31名未专攻种植学的牙医 |
1617 | 2024-08-07 |
Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
2022-May-25, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics12061316
PMID:35741125
|
研究论文 | 本文研究使用深度学习方法在全景X光片上分割牙科修复体 | 提出使用小尺寸、等间距的矩形图像块(tiles)训练模型,以提高分割性能和加速收敛 | 全景X光片的分割偏向于更频繁和扩展的类别 | 探索使用U-Net模型在全景X光片上分割牙科修复体的有效方法 | 牙科修复体,包括填充物、冠和根管填充 | 计算机视觉 | NA | 卷积神经网络(CNN) | U-Net | 图像 | 1781张全景X光片 |
1618 | 2024-08-07 |
Deep Learning Signal Discrimination for Improved Sensitivity at High Specificity for CMOS Intraoperative Probes
2022-Apr, IEEE transactions on radiation and plasma medical sciences
IF:4.6Q1
DOI:10.1109/TRPMS.2021.3098448
PMID:35419499
|
研究论文 | 本研究探讨了使用深度学习算法来提高CMOS手术探针在高特异性下的敏感性,通过区分背景伽马射线信号来辅助癌症切除手术中癌细胞的检测 | 本研究采用了两种基于卷积神经网络(CNN)的方法进行β-γ鉴别,并通过定制的AUC损失函数在训练中优化ROC曲线的左下区域,显著提高了敏感性 | NA | 提高手术探针在高特异性下的敏感性,以更准确地区分癌细胞和健康组织 | 探讨深度学习算法在手术探针中的应用,以及其对伽马射线信号的分类和语义分割能力 | 机器学习 | NA | 深度学习算法 | 卷积神经网络(CNN) | 伽马射线信号 | 涉及多种放射性核素,包括C、Co和[Formula: see text]Tc |
1619 | 2024-08-07 |
Caries Detection on Intraoral Images Using Artificial Intelligence
2022-02, Journal of dental research
IF:5.7Q1
DOI:10.1177/00220345211032524
PMID:34416824
|
研究论文 | 本研究开发了一种基于卷积神经网络(CNN)的深度学习方法,用于在口腔内图像上自动检测和分类龋齿,并将其诊断性能与专家标准进行比较 | 首次使用人工智能(AI)方法进行口腔内图像的自动龋齿检测 | 当前方法需要进一步改进 | 开发一种深度学习方法,用于自动检测和分类口腔内图像中的龋齿,并评估其诊断性能 | 2,417张来自恒牙的匿名化照片,包括1,317张咬合面和1,100张光滑面 | 计算机视觉 | 口腔疾病 | 卷积神经网络(CNN) | CNN | 图像 | 2,417张匿名化照片 |
1620 | 2024-08-07 |
Improved runoff forecasting based on time-varying model averaging method and deep learning
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0274004
PMID:36108081
|
研究论文 | 本研究提出了一种基于时间变化权重(TV-DMA)的动态模型平均方法,并结合深度学习算法构建了一个综合的径流预测模型框架 | 采用时间变化权重(TV-DMA)方法和深度学习算法构建综合预测模型,提高了径流预测的准确性和稳定性 | 洪水季节的预测性能明显低于非洪水季节 | 提高径流预测的准确性和稳定性 | 径流预测 | NA | NA | 深度学习算法 | NA | 数值数据 | 未具体说明样本数量 |