本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1721 | 2024-08-07 |
Using Deep Learning Radiomics to Distinguish Cognitively Normal Adults at Risk of Alzheimer's Disease From Normal Control: An Exploratory Study Based on Structural MRI
2022, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2022.894726
PMID:35530047
|
研究论文 | 本研究提出了一种基于结构MRI图像的深度学习放射组学方法,用于区分认知正常但有阿尔茨海默病风险的成年人与正常对照组 | 本研究首次提出了一种深度学习放射组学方法,通过结构MRI图像区分阿尔茨海默病风险个体与正常对照组 | 本研究仅基于ADNI数据库的数据进行,样本量有限,需要进一步在更广泛的人群中验证 | 开发一种新的方法来区分认知正常但有阿尔茨海默病风险的个体与正常对照组 | 认知正常但有阿尔茨海默病风险的成年人与正常对照组 | 机器学习 | 阿尔茨海默病 | MRI | 深度学习放射组学 | 图像 | 417名认知正常的成年人,分为181名阿尔茨海默病风险个体和236名正常对照组 |
1722 | 2024-08-07 |
A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer's disease
2022-03-29, Alzheimer's research & therapy
DOI:10.1186/s13195-022-00985-x
PMID:35351193
|
研究论文 | 本文研究了一种基于深度学习的MRI方法,用于早期阿尔茨海默病的诊断,并与其他生物标志物进行比较 | 提出了一种基于结构MRI的体素级深度学习方法,该方法在早期阿尔茨海默病的诊断中表现优于其他神经影像学方法 | NA | 验证基于MRI的深度学习模型在早期阿尔茨海默病诊断中的有效性和优势 | 早期阿尔茨海默病及其相关生物标志物 | 机器学习 | 阿尔茨海默病 | MRI | 深度学习模型 | 图像 | NA |
1723 | 2024-08-07 |
Predicting diagnosis 4 years prior to Alzheimer's disease incident
2022, NeuroImage. Clinical
DOI:10.1016/j.nicl.2022.102993
PMID:35344803
|
研究论文 | 本研究利用深度学习纵向模型,即图卷积和循环神经网络(graph-CNN-RNN),对阿尔茨海默病(AD)的脑结构MRI扫描进行预测分析 | 首次采用graph-CNN-RNN模型对AD进行长达4年的早期诊断预测,并展示了脑形态学从预测到明显AD阶段的定量轨迹 | NA | 旨在利用深度学习技术提前预测阿尔茨海默病的发生 | 阿尔茨海默病的早期诊断和预测 | 机器学习 | 阿尔茨海默病 | MRI扫描 | graph-CNN-RNN | 图像 | 训练集包含1559个样本,验证集包含930个样本 |
1724 | 2024-08-07 |
A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers
2022-02-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-06273-w
PMID:35173191
|
研究论文 | 本文描述了一种深度学习方法,用于从OCTA、OCT结构、2D b-scan流图像和高清5线b-scan立方体组合中区分非AMD、非新生血管性AMD和新生血管性AMD,并检测与AMD风险相关的眼部生物标志物。 | 该研究利用多模态数据输入2D-3D卷积神经网络(CNNs),实现了对AMD及其生物标志物的高精度预测,准确率高达90.2%。 | NA | 开发一种深度学习系统,用于区分AMD的晚期阶段,并比较专家与AI在眼部生物标志物检测方面的表现。 | 年龄相关性黄斑变性(AMD)及其生物标志物的检测。 | 机器学习 | 眼科疾病 | 光学相干断层扫描血管成像(OCTA) | 卷积神经网络(CNN) | 图像 | NA |
1725 | 2024-08-07 |
Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning
2022-08-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-17753-4
PMID:35982106
|
研究论文 | 本研究提出了一种名为GlaucomaNet的自动化分类算法,用于通过不同人群和环境下的眼底照片识别原发性开角型青光眼(POAG) | GlaucomaNet通过两个卷积神经网络模拟人类评分过程,学习区分性特征并融合特征进行评分,提高了诊断的准确性和透明度 | NA | 开发一种稳健且可解释的算法,自动辅助下游诊断任务 | 原发性开角型青光眼(POAG) | 计算机视觉 | 眼科疾病 | 深度学习 | 卷积神经网络 | 图像 | 两个数据集:Ocular Hypertension Treatment Study (OHTS)参与者和Large-scale Attention-based Glaucoma (LAG)数据集 |
1726 | 2024-08-07 |
Deep learning for subtyping the Alzheimer's disease spectrum
2022-02, Trends in molecular medicine
IF:12.8Q1
DOI:10.1016/j.molmed.2021.12.004
PMID:34996710
|
研究论文 | Kwak等人基于结构影像对认知受损个体进行亚型分类,为阿尔茨海默病谱的细分提供了新的见解 | 通过亚型分类量化阿尔茨海默病的异质性,为疾病修饰疗法的开发和患者护理的改进提供了更精准的方法 | NA | 探索阿尔茨海默病谱的亚型分类 | 认知受损个体 | 机器学习 | 阿尔茨海默病 | 深度学习 | NA | 影像 | NA |