本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2025-10-06 |
Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence
2022-04-11, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
IF:4.2Q1
DOI:10.1186/s12968-022-00861-5
PMID:35410226
|
研究论文 | 本研究开发了一种改进的深度学习算法,用于从心血管磁共振图像自动测量右心室射血分数 | 使用包含更广泛右心室病理学数据的数据集,并在交叉验证阶段采用领域特异性定量性能评估指标 | 研究仅针对100名手动与自动测量差异最大的患者,样本量相对有限 | 提高从心血管磁共振图像自动量化右心室功能的准确性 | 右心室尺寸和功能 | 医学影像分析 | 心血管疾病 | 心血管磁共振成像 | 深度学习 | 医学图像 | 100名患者 | NA | NA | 线性回归分析,Bland-Altman分析,分类准确率 | NA |
| 2 | 2025-10-06 |
Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge
2022-Apr, European radiology
IF:4.7Q1
DOI:10.1007/s00330-021-08320-y
PMID:34786615
|
研究论文 | 评估基于PI-RADS训练的深度学习算法在前列腺癌检测中的性能,并研究数据量和先验知识对检测效果的影响 | 首次系统评估深度学习算法在前列腺癌检测中的最小训练数据量要求,并量化分析区域分割先验知识对性能的影响 | 研究仅基于两个医疗中心的数据,需要更多外部验证来确认结果的普适性 | 研究深度学习在前列腺癌MRI检测中的性能表现及其影响因素 | 2734名PSA水平升高(≥3 ng/mL)且未进行过活检的可疑前列腺癌患者 | 数字病理 | 前列腺癌 | 多参数MRI(mpMRI)、双参数MRI(bpMRI) | 深度学习 | 医学影像 | 2734名患者(中心1:1952例,中心2:296例),782例测试病例 | NA | NA | 灵敏度,FROC,ROC,AUC,假阳性率 | NA |
| 3 | 2025-10-06 |
Machine Learning Analysis of Cocaine Addiction Informed by DAT, SERT, and NET-Based Interactome Networks
2022-Apr-12, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.2c00002
PMID:35294204
|
研究论文 | 本研究通过整合DAT、SERT和NET相互作用组网络,开发机器学习/深度学习模型用于可卡因成瘾药物发现 | 首次结合三种关键神经递质转运蛋白的相互作用组网络进行AI驱动的抗可卡因成瘾药物开发 | 仅从460个相互作用蛋白中筛选出61个具有足够抑制剂数据的目标蛋白 | 开发基于人工智能的抗可卡因成瘾先导化合物发现系统方法 | 多巴胺转运蛋白(DAT)、血清素转运蛋白(SERT)和去甲肾上腺素转运蛋白(NET)相互作用组网络 | 机器学习 | 药物成瘾 | 蛋白质-蛋白质相互作用网络分析 | 自编码器,梯度提升决策树,多任务深度神经网络 | 化学抑制剂数据 | 115,407个抑制剂对应61个蛋白质靶点 | NA | 自编码器,梯度提升决策树,多任务深度神经网络 | NA | NA |
| 4 | 2025-10-07 |
Multi-step short-term
P
M
2.5
forecasting for enactment of proactive environmental regulation strategies
2022-04-21, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-022-10029-4
PMID:35445884
|
研究论文 | 本研究使用LSTM模型对北京和旁遮普地区的PM2.5浓度进行多步短期预测,以支持环境监管策略制定 | 采用贝叶斯优化技术调谐LSTM模型超参数和权重初始化策略,针对南亚两个高污染区域进行多变量多步预测 | 预测误差随时间步长增加而逐渐增大,24小时预测的RMSE达到0.7290 | 开发PM2.5多步短期预测模型,为建立空气质量预警系统和制定环境监管政策提供支持 | 中国北京和巴基斯坦旁遮普地区的PM2.5浓度数据 | 机器学习 | 心血管疾病 | 时间序列预测 | LSTM | 时间序列数据 | 两个高污染区域(北京和旁遮普)的空气质量数据 | NA | LSTM | RMSE, 准确率 | NA |
| 5 | 2025-10-07 |
Deep learning identifies robust gender differences in functional brain organization and their dissociable links to clinical symptoms in autism
2022-Apr, The British journal of psychiatry : the journal of mental science
DOI:10.1192/bjp.2022.13
PMID:35164888
|
研究论文 | 本研究利用深度学习识别自闭症谱系障碍中功能脑组织的性别差异及其与临床症状的关联 | 开发了新型时空深度神经网络(stDNN),首次在多中心队列中系统识别自闭症患者功能脑组织的性别差异特征 | 研究主要基于神经影像数据,需要进一步验证这些脑特征与行为表现的直接关联 | 识别自闭症谱系障碍中区分女性和男性的功能性脑组织标志物并预测症状严重程度 | 自闭症谱系障碍患者(n=773)和神经典型发育个体的功能性磁共振成像数据 | 医学影像分析 | 自闭症谱系障碍 | 功能性磁共振成像(fMRI) | 深度学习 | 神经影像数据 | 773名自闭症谱系障碍患者的多中心队列 | NA | 时空深度神经网络(stDNN) | 分类准确率 | NA |
| 6 | 2025-10-07 |
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning
2022-04-01, JAMA cardiology
IF:14.8Q1
DOI:10.1001/jamacardio.2021.6059
PMID:35195663
|
研究论文 | 本研究开发了一种深度学习工作流程,用于自动量化心室肥厚并预测左心室壁增厚的原因 | 开发了全自动深度学习工作流程,能够精确测量左心室尺寸并区分不同原因的心室肥厚,相比人工专家具有更高的可重复性和精确度 | 研究基于回顾性数据,需要在前瞻性研究中进一步验证 | 评估深度学习工作流程在量化心室肥厚和预测左心室壁增厚原因方面的准确性 | 左心室肥厚患者,特别是肥厚型心肌病和心脏淀粉样变性患者 | 医学影像分析 | 心血管疾病 | 超声心动图视频分析 | 深度学习 | 超声心动图视频 | 23745名患者,包括斯坦福医疗保健和CSMC的胸骨旁长轴视频和心尖四腔视频 | NA | NA | 平均绝对误差(MAE), AUC, R2 | NA |
| 7 | 2025-02-21 |
Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas
2022-Apr-27, Sensors (Basel, Switzerland)
DOI:10.3390/s22093348
PMID:35591037
|
研究论文 | 本文提出了一种基于异构数据源的混合LSTM-GRU模型,用于城市区域的交通速度预测 | 提出了一种综合算法,将来自传感器、服务和外部数据源的异构数据整合到混合时空特征空间中,并比较了多种深度学习算法在时间序列地理空间数据上的表现 | 未提及具体的研究局限性 | 提高智能交通系统中的交通速度预测准确性 | 城市区域的交通速度数据 | 机器学习 | NA | 深度学习 | LSTM, GRU, CNN | 时间序列地理空间数据 | 未提及具体样本数量 | NA | NA | NA | NA |
| 8 | 2025-02-21 |
Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
2022-Apr-13, Sensors (Basel, Switzerland)
DOI:10.3390/s22082976
PMID:35458962
|
研究论文 | 本文提出了一种基于深度学习的情绪识别方法,使用脑电图(EEG)信号和双向长短期记忆(Bi-LSTM)模型 | 提出了一种新的情绪识别方法,结合了数据选择、特征提取、特征选择和分类阶段,并使用Bi-LSTM模型提高了识别准确率 | 未提及具体的研究局限性 | 提高情绪识别模型的性能,以帮助诊断心理和行为障碍 | 脑电图(EEG)信号 | 机器学习 | 心理和行为障碍 | 脑电图(EEG)信号处理 | 双向长短期记忆(Bi-LSTM) | 脑电图(EEG)信号 | 使用了标准预处理的情感分析生理信号数据库(DEAP) | NA | NA | NA | NA |
| 9 | 2025-02-21 |
Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems
2022-Apr-09, Sensors (Basel, Switzerland)
DOI:10.3390/s22082886
PMID:35458871
|
研究论文 | 本文提出了一种用于工业控制系统(ICS)中多变量时间序列异常检测的轻量级长短期记忆变分自编码器(LW-LSTM-VAE)架构 | 提出了一种轻量级的LW-LSTM-VAE架构,用于ICS中的异常检测,并在水净化和水分配厂两个应用中成功验证了其有效性 | 工业数据集稀缺,限制了异常检测技术的开发 | 开发一种无监督的深度学习方法,用于检测工业控制系统中的异常行为 | 工业控制系统中的多变量时间序列数据 | 机器学习 | NA | 深度学习 | LW-LSTM-VAE | 时间序列数据 | 使用了Secure Water Treatment (SWaT)基准测试中的数据进行验证 | NA | NA | NA | NA |
| 10 | 2025-02-21 |
Model-assisted deep learning of rare extreme events from partial observations
2022-Apr, Chaos (Woodbury, N.Y.)
DOI:10.1063/5.0077646
PMID:35489849
|
研究论文 | 本文探讨了一种模型辅助的深度学习框架,用于从部分观测数据中预测罕见的极端事件 | 提出了一种模型辅助的深度学习框架,通过数值模拟生成训练数据,解决了极端事件样本不足的问题 | 训练数据仅使用可观测量的子集,可能限制了模型的全面性 | 研究如何利用深度学习预测罕见的极端事件 | 三种不同的动力系统(Rössler吸引子、FitzHugh-Nagumo模型和湍流流体) | 机器学习 | NA | 数值模拟 | 前馈神经网络、长短期记忆网络(LSTM)、储备计算 | 数值模拟数据 | NA | NA | NA | NA | NA |
| 11 | 2025-10-07 |
Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes
2022-04, American journal of ophthalmology
IF:4.1Q1
DOI:10.1016/j.ajo.2021.11.008
PMID:34780803
|
研究论文 | 本研究比较了基于深度学习的光学相干断层扫描血管成像图像分析与传统特征分类方法在青光眼诊断中的性能 | 首次使用VGG16卷积神经网络直接分析en face血管密度图像,相比传统梯度提升分类器的特征分析方法显著提升了青光眼分类准确率 | 样本量相对有限(405只眼睛),仅针对视神经头区域成像,未包含其他眼部区域 | 改进青光眼与健康眼睛的分类诊断方法 | 80名健康个体的130只眼睛和185名青光眼患者的275只眼睛 | 计算机视觉 | 青光眼 | 光学相干断层扫描血管成像(OCTA) | CNN, GBC | 图像 | 405只眼睛(130只健康眼,275只青光眼) | NA | VGG16 | AUPRC(精确召回曲线下面积) | NA |
| 12 | 2024-12-08 |
Free-form optimization of nanophotonic devices: from classical methods to deep learning
2022-Apr, Nanophotonics (Berlin, Germany)
DOI:10.1515/nanoph-2021-0713
PMID:39633938
|
综述 | 本文综述了自由形式纳米光子器件设计的新兴领域,涵盖了从经典方法到深度学习方法的优化策略 | 本文介绍了自由形式设计方案,突破了传统设计约束,充分利用了设计潜力 | NA | 系统概述自由形式纳米光子器件设计领域 | 自由形式纳米光子器件的优化策略 | 纳米光子学 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 13 | 2024-09-30 |
Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning
2022-Apr, Exploration (Beijing, China)
DOI:10.1002/EXP.20210097
PMID:37323884
|
研究论文 | 本文综述了具有NIR-IIb特性的有机荧光纳米探针的最新发展及其在动物模型深部成像中的应用 | 首次系统综述了NIR-IIb区域有机荧光纳米探针的发展及其在深部成像中的应用 | 有机荧光纳米探针在NIR-IIb区域的应用仍处于早期阶段,临床应用尚未广泛 | 综述具有NIR-IIb特性的有机荧光纳米材料的发展及其在深部成像中的应用 | 具有NIR-IIb特性的有机荧光纳米材料及其在动物模型中的应用 | 生物医学成像 | NA | NIR-IIb成像 | NA | 图像 | 动物模型 | NA | NA | NA | NA |
| 14 | 2024-09-29 |
Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment
2022-04-29, Science (New York, N.Y.)
DOI:10.1126/science.abi8175
PMID:35482859
|
研究论文 | 本文通过逐步引入突变到健康的人类黑素细胞中,建立了九种遗传上不同的黑色素瘤细胞模型,研究了这些突变对肿瘤及其微环境的影响 | 本文创新性地通过逐步引入突变,建立了多个遗传上不同的黑色素瘤细胞模型,并研究了这些突变对肿瘤及其微环境的影响 | NA | 研究基因突变与人类癌症特定恶性表型之间的因果关系 | 人类黑素细胞及其突变后的黑色素瘤细胞模型 | 数字病理学 | 黑色素瘤 | 基因编辑 | 深度学习模型 | 基因型数据 | 九种遗传上不同的黑色素瘤细胞模型 | NA | NA | NA | NA |
| 15 | 2024-09-29 |
Inferring ongoing cancer evolution from single tumour biopsies using synthetic supervised learning
2022-04, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1010007
PMID:35482653
|
研究论文 | 本文提出了一种名为TumE的合成监督学习方法,结合癌症进化模拟模型和贝叶斯神经网络,用于从单个肿瘤活检中推断正在进行的癌症进化 | TumE方法显著提高了检测正选择、解卷积选择亚克隆群体和估计亚克隆频率的准确性和推断时间 | NA | 开发一种新的方法来推断单个肿瘤活检中的癌症进化 | 癌症进化和亚克隆选择 | 机器学习 | NA | 贝叶斯神经网络 | 神经网络 | 基因组数据 | 合成和患者肿瘤样本 | NA | NA | NA | NA |
| 16 | 2024-09-28 |
Deep learning-based image processing in optical microscopy
2022-Apr, Biophysical reviews
IF:4.9Q1
DOI:10.1007/s12551-022-00949-3
PMID:35528030
|
综述 | 本文综述了深度学习在光学显微镜图像处理中的应用 | 深度学习在光学显微镜图像处理中的应用,特别是在图像分类、分割和分辨率增强方面的应用 | NA | 探讨深度学习在光学显微镜图像处理中的应用 | 光学显微镜图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA | NA | NA | NA | NA |
| 17 | 2024-09-23 |
Accurate prediction of molecular targets using a self-supervised image representation learning framework
2022-Apr-07, Research square
DOI:10.21203/rs.3.rs-1477870/v1
PMID:35411337
|
研究论文 | 本文介绍了一种名为ImageMol的无监督预训练深度学习框架,用于从850万未标记的类药物分子中预测候选化合物的分子靶点 | ImageMol框架通过从分子图像中预训练化学表示,基于分子的局部和全局结构特征,展示了在分子性质评估和分子靶点预测中的高性能 | NA | 开发一种无监督预训练的深度学习框架,用于准确预测药物的分子靶点 | 类药物分子及其分子靶点 | 计算机视觉 | COVID-19 | 深度学习 | NA | 图像 | 850万未标记的类药物分子 | NA | NA | NA | NA |
| 18 | 2024-09-23 |
Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart
2022-Apr, Nature cardiovascular research
IF:9.4Q1
DOI:10.1038/s44161-022-00041-9
PMID:35464150
|
研究论文 | 开发了一种结合神经网络和生存分析的深度学习方法,用于从增强心脏磁共振图像和临床协变量中预测缺血性心脏病患者的个体化生存曲线 | 提出的深度学习方法在预测长达10年的生存曲线时表现优异,且能估计预测的不确定性,优于使用临床协变量的标准生存模型 | NA | 开发一种新的深度学习方法,用于预测心律失常导致的猝死患者的生存概率 | 缺血性心脏病患者 | 机器学习 | 心血管疾病 | 深度学习 | 神经网络 | 图像 | 多中心内部验证数据和独立测试集 | NA | NA | NA | NA |
| 19 | 2024-09-23 |
SLEAP: A deep learning system for multi-animal pose tracking
2022-04, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-022-01426-1
PMID:35379947
|
研究论文 | 本文介绍了一种名为SLEAP的深度学习系统,用于多动物姿态跟踪 | SLEAP系统具有用户友好的图形界面、标准化的数据模型、可重复的配置系统,以及超过30种模型架构和两种部分分组与身份跟踪方法 | NA | 开发一种能够处理多动物姿态跟踪的深度学习系统,以支持社会行为或自然环境中动物行为的研究 | 苍蝇、蜜蜂、小鼠和沙鼠等多动物的姿态跟踪 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 涉及七个数据集,包括苍蝇、蜜蜂、小鼠和沙鼠 | NA | NA | NA | NA |
| 20 | 2024-09-23 |
Deep learning for robust and flexible tracking in behavioral studies for C. elegans
2022-04, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1009942
PMID:35395006
|
研究论文 | 本文展示了使用Faster R-CNN进行秀丽隐杆线虫行为研究中的鲁棒和灵活跟踪 | 本文首次将Faster R-CNN应用于秀丽隐杆线虫的行为跟踪,展示了其在复杂环境中的速度、准确性和鲁棒性 | NA | 展示Faster R-CNN在不同实验条件下进行大规模行为研究的适用性 | 秀丽隐杆线虫在不同生命阶段的行为,包括发育过程中的速度、繁殖成体的生育率和空间分布,以及衰老群体的行为衰退 | 计算机视觉 | NA | Faster R-CNN | CNN | 视频 | NA | NA | NA | NA | NA |