深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202208-202208] [清除筛选条件]
当前共找到 62 篇文献,本页显示第 61 - 62 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
61 2024-08-07
A Novel Deep Learning Radiomics Model to Discriminate AD, MCI and NC: An Exploratory Study Based on Tau PET Scans from ADNI
2022-Aug-12, Brain sciences IF:2.7Q3
研究论文 本文探索了一种基于深度学习放射组学(DLR)的新模型,用于区分阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和正常对照(NC)受试者,该模型在tau正电子发射断层扫描(tau-PET)的基础上进行了验证。 提出了一个基于深度学习放射组学的新模型,用于区分AD、MCI和NC,并在tau-PET扫描上进行了验证。 NA 探索和验证一种新的深度学习放射组学模型,用于区分阿尔茨海默病、轻度认知障碍和正常对照。 阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和正常对照(NC)受试者。 机器学习 阿尔茨海默病 tau正电子发射断层扫描(tau-PET) 深度学习放射组学(DLR)模型 图像 211名正常对照(NC)、197名轻度认知障碍(MCI)和117名阿尔茨海默病(AD)患者。
62 2024-08-07
Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning
2022-08-18, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种名为GlaucomaNet的自动化分类算法,用于通过不同人群和环境下的眼底照片识别原发性开角型青光眼(POAG) GlaucomaNet通过两个卷积神经网络模拟人类评分过程,学习区分性特征并融合特征进行评分,提高了诊断的准确性和透明度 NA 开发一种稳健且可解释的算法,自动辅助下游诊断任务 原发性开角型青光眼(POAG) 计算机视觉 眼科疾病 深度学习 卷积神经网络 图像 两个数据集:Ocular Hypertension Treatment Study (OHTS)参与者和Large-scale Attention-based Glaucoma (LAG)数据集
回到顶部