深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202208-202208] [清除筛选条件]
当前共找到 71 篇文献,本页显示第 61 - 71 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
61 2024-08-31
Hierarchical deep learning of multiscale differential equation time-steppers
2022-Aug-08, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
研究论文 本文开发了一种分层的深度神经网络时间步进算法,用于在多时间尺度上近似动态系统的流图 提出的分层时间步进方案在捕捉多时间尺度、提高准确性、长期预测效率和灵活性方面优于现有算法 NA 开发一种高效且准确的数据驱动方法,用于在多时间尺度上近似非线性动态系统的解 非线性动态系统,包括Van der Pol振荡器、Lorenz系统、Kuramoto-Sivashinsky方程和流体通过圆柱体流动;音频和视频信号 机器学习 NA 深度神经网络 深度神经网络 序列数据 涉及多种非线性动态系统和信号类型
62 2024-08-07
Artificial Intelligence in Echocardiography: The Time is Now
2022-Aug, Reviews in cardiovascular medicine IF:1.9Q3
研究论文 本文探讨了人工智能(AI)在超声心动图领域的应用及其对诊断、治疗和患者护理的潜在革命性影响 AI在超声心动图中的应用展示了在训练、图像获取、解释和分析、诊断、预测和表型开发方面的巨大潜力 AI在超声心动图的实际临床应用和接受度方面仍存在障碍,尤其是缺乏临床结果研究,以及法律和伦理问题 推动AI在临床工作空间的应用,改善超声心动图的临床效用、效率和培训 AI在超声心动图中的应用及其对心血管疾病评估的影响 机器学习 心血管疾病 机器学习(ML)和深度学习(DL) NA 图像 NA
63 2024-08-07
Improving interobserver agreement and performance of deep learning models for segmenting acute ischemic stroke by combining DWI with optimized ADC thresholds
2022-Aug, European radiology IF:4.7Q1
研究论文 研究通过结合弥散加权成像(DWI)与优化表观弥散系数(ADC)阈值,提高急性缺血性卒中(AIS)分割的观察者间一致性和深度学习模型(DLMs)性能 通过结合特定ADC阈值与DWI,显著提高了急性缺血性卒中病变的分割性能和观察者间的一致性 NA 探讨ADC阈值对观察者间一致性和深度学习模型分割急性缺血性卒中性能的影响 急性缺血性卒中(AIS)的分割 机器学习 脑血管疾病 弥散加权成像(DWI) 深度学习模型(DLMs) 图像 训练集包含76名AIS患者,测试集包含145名AIS患者
64 2024-08-07
Deep Learning to Predict Traumatic Brain Injury Outcomes in the Low-Resource Setting
2022-08, World neurosurgery IF:1.9Q2
研究论文 本文旨在开发首个用于预测低资源环境下创伤性脑损伤(TBI)结果的深度学习模型,并将其性能与较简单的算法进行比较 首次使用深度学习进行TBI预测,特别是在低收入和中等收入国家(LMICs)中,这些地区对决策支持系统有迫切需求 深度学习并非万能,最佳算法选择取决于特定的临床环境 增强LMICs中TBI的分类管理 TBI患者的预后预测 机器学习 创伤性脑损伤 深度神经网络 深度神经网络、浅层神经网络和弹性网正则化逻辑回归模型 临床变量 2164名患者,其中12%有不良预后
65 2024-08-07
Spatially Distinct Genetic Determinants of Aortic Dimensions Influence Risks of Aneurysm and Stenosis
2022-08-02, Journal of the American College of Cardiology IF:21.7Q1
研究论文 本研究使用深度学习分析了43,317名UK Biobank参与者的230万张心脏磁共振图像,以阐明左心室流出道、主动脉根部和升主动脉直径的遗传基础,并探讨这些直径与疾病发生率的关联。 发现了79个与至少一个直径显著相关的基因位点,其中35个是新发现的,这些发现有助于预测胸主动脉瘤和主动脉狭窄。 NA 阐明左心室流出道、主动脉根部和升主动脉直径的遗传基础 左心室流出道、主动脉根部和升主动脉的直径 数字病理学 心血管疾病 深度学习 NA 图像 43,317名UK Biobank参与者
66 2024-08-05
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
2022-Aug, The journal of machine learning for biomedical imaging
PMID:36998700
研究论文 本文探讨了脑肿瘤多区段分割中的不确定性量化评分的评估与排名 提出了一种新的评分方法用于评估和排名脑肿瘤分割的不确定性估计 研究中可能没有完全考虑各种不确定性估计方法的适用性 量化深度学习模型预测的不确定性,以促进临床转化 针对参与BRAST 2019和2020任务的多个团队的脑肿瘤分割不确定性 数字病理学 脑肿瘤 深度学习 NA 医学影像 14个独立参与团队
67 2024-08-05
A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: retrospective training and validation of ResNet
2022-08, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society IF:2.6Q1
研究论文 该文章提出了一种基于深度学习的方法来诊断脊椎MRI上的脊椎骨折 应用ResNet50算法开发了决策支持系统,以提高临床医生对脊椎骨折的诊断能力 需要考虑脊椎体以外的其他发现,以改善模型,进一步的研究是必要的以将结果推广到实际应用中 提高临床医生在MRI上对良性和恶性脊椎骨折的诊断性能 190名患者,其中50名有恶性骨折,140名有良性骨折 数字病理学 脊椎骨折 深度学习 ResNet50 MRI图像 190名患者
68 2024-08-07
Evaluating frailty, mortality, and complications associated with metastatic spine tumor surgery using machine learning-derived body composition analysis
2022-Aug-01, Journal of neurosurgery. Spine
研究论文 本研究利用机器学习衍生的身体成分分析评估了转移性脊柱肿瘤手术相关的虚弱、死亡率和并发症 通过深度学习方法评估癌症患者的身体成分,以改善术前风险分层 仅基于484名患者的观察性研究,样本量有限 评估身体成分与脊柱转移瘤手术后并发症、住院时间和死亡率的关系 接受脊柱转移瘤手术的癌症患者 机器学习 脊柱肿瘤 深度学习 k-means聚类分析 CT图像 484名癌症患者
69 2024-08-07
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
2022-08-15, Genome biology IF:10.1Q1
研究论文 本文介绍了一种名为BindVAE的新型无监督深度学习方法,基于Dirichlet变分自编码器,用于从开放染色质区域联合解码多个转录因子(TF)结合信号。 BindVAE能够将输入的DNA序列分解为不同的潜在因子,这些因子编码细胞类型特异性的体内结合信号、TFs合作结合的复合模式以及结合位点周围的基因组上下文。 NA 开发一种新的无监督深度学习方法,用于从开放染色质区域中联合解码多个转录因子结合信号。 DNA序列中的转录因子结合信号 机器学习 NA Dirichlet变分自编码器 变分自编码器(VAE) DNA序列 NA
70 2024-08-07
A Novel Deep Learning Radiomics Model to Discriminate AD, MCI and NC: An Exploratory Study Based on Tau PET Scans from ADNI
2022-Aug-12, Brain sciences IF:2.7Q3
研究论文 本文探索了一种基于深度学习放射组学(DLR)的新模型,用于区分阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和正常对照(NC)受试者,该模型在tau正电子发射断层扫描(tau-PET)的基础上进行了验证。 提出了一个基于深度学习放射组学的新模型,用于区分AD、MCI和NC,并在tau-PET扫描上进行了验证。 NA 探索和验证一种新的深度学习放射组学模型,用于区分阿尔茨海默病、轻度认知障碍和正常对照。 阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和正常对照(NC)受试者。 机器学习 阿尔茨海默病 tau正电子发射断层扫描(tau-PET) 深度学习放射组学(DLR)模型 图像 211名正常对照(NC)、197名轻度认知障碍(MCI)和117名阿尔茨海默病(AD)患者。
71 2024-08-07
Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning
2022-08-18, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种名为GlaucomaNet的自动化分类算法,用于通过不同人群和环境下的眼底照片识别原发性开角型青光眼(POAG) GlaucomaNet通过两个卷积神经网络模拟人类评分过程,学习区分性特征并融合特征进行评分,提高了诊断的准确性和透明度 NA 开发一种稳健且可解释的算法,自动辅助下游诊断任务 原发性开角型青光眼(POAG) 计算机视觉 眼科疾病 深度学习 卷积神经网络 图像 两个数据集:Ocular Hypertension Treatment Study (OHTS)参与者和Large-scale Attention-based Glaucoma (LAG)数据集
回到顶部