本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2025-03-28 |
GPU Accelerated Estimation of a Shared Random Effect Joint Model for Dynamic Prediction
2022-Oct, Computational statistics & data analysis
IF:1.5Q2
DOI:10.1016/j.csda.2022.107528
PMID:39257897
|
research paper | 该研究提出了一种GPU加速的共享随机效应联合模型,用于动态预测终端临床事件的风险 | 通过新颖的两阶段估计程序和GPU编程(使用PyTorch深度学习框架)显著加速了联合模型的估计 | 模型在大数据集或多非线性纵向预测因子情况下计算复杂度高 | 提高动态预测终端临床事件风险的效率和准确性 | 纵向队列研究中的受试者 | machine learning | NA | GPU编程, PyTorch | 共享随机效应联合模型 | 纵向数据 | NA |
2 | 2025-03-02 |
Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review
2022-Oct-17, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics12102512
PMID:36292201
|
综述 | 本文对心胸影像领域中机器学习和深度学习的应用进行了范围审查,系统搜索了同行评审的医学文献,并定量提取了关键数据元素 | 提供了心胸影像领域中ML/DL应用的综合概述,并提出了使研究超越概念验证向临床采纳迈进的一般建议 | 未具体提及研究的局限性 | 探讨机器学习和深度学习在心胸影像领域的应用及其临床采纳的潜力 | 心胸影像 | 计算机视觉 | 心血管疾病 | NA | 机器学习(ML),深度学习(DL) | 图像 | NA |
3 | 2025-02-23 |
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
2022-Oct, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooac075
PMID:36110150
|
研究论文 | 本文通过集成和蒸馏技术优化深度学习模型在电子癌症病理报告分类中的部署 | 通过将集成模型的软标签知识蒸馏到单一模型中,减少过拟合和模型过度自信 | 未提及具体的数据集大小或模型在更广泛数据集上的泛化能力 | 优化深度学习模型在癌症病理报告分类中的部署,减少过拟合和模型过度自信 | 电子癌症病理报告 | 自然语言处理 | 癌症 | 知识蒸馏 | 多任务卷积神经网络(MtCNN) | 文本 | 未提及具体样本数量 |
4 | 2025-02-21 |
Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal
2022-Oct-22, Sensors (Basel, Switzerland)
DOI:10.3390/s22218087
PMID:36365785
|
研究论文 | 本文提出了一种基于EDA信号的个性化深度BiLSTM RNN模型,用于疼痛强度分类 | 使用深度学习框架自动化特征工程步骤,直接处理原始输入信号,并探索了BiLSTM RNN与XGB的集成模型 | 样本量较小,仅涉及29名受试者 | 自动评估疼痛强度,实现实时疼痛监测 | 29名受试者的EDA信号 | 机器学习 | NA | EDA信号分解与增强 | BiLSTM RNN, XGB | 生理信号 | 29名受试者 |
5 | 2025-02-21 |
State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning
2022-Oct-15, Sensors (Basel, Switzerland)
DOI:10.3390/s22207835
PMID:36298185
|
研究论文 | 本文提出了一种基于长短期记忆网络(LSTM)和增量容量分析的电池健康状态(SOH)估计方法,并利用迁移学习提高模型在不同负载模式下的适用性 | 结合增量容量分析(ICA)和离散小波变换(DWT)预处理数据,优化LSTM模型的输入,并通过迁移学习扩展模型的应用范围 | 方法依赖于早期循环的放电电压曲线,可能对数据采集的精度和稳定性有较高要求 | 提高电池健康状态(SOH)估计的准确性和可靠性 | 电池的健康状态(SOH) | 机器学习 | NA | 增量容量分析(ICA)、离散小波变换(DWT)、灰色关联分析(GRA) | 长短期记忆网络(LSTM) | 电压分布数据 | 小批量数据 |
6 | 2025-02-06 |
Just How Confident Can We Be in Predicting Sports Injuries? A Systematic Review of the Methodological Conduct and Performance of Existing Musculoskeletal Injury Prediction Models in Sport
2022-10, Sports medicine (Auckland, N.Z.)
DOI:10.1007/s40279-022-01698-9
PMID:35689749
|
系统综述 | 本文系统评估了运动医学中肌肉骨骼损伤预测模型的方法学实施和报告完整性 | 首次系统性地评估了运动医学中肌肉骨骼损伤预测模型的方法学质量和报告完整性,揭示了现有模型的普遍问题和改进需求 | 研究仅包括截至2021年6月的数据,且仅纳入英文和同行评审的研究,可能遗漏了其他语言或未发表的重要研究 | 评估运动医学中肌肉骨骼损伤预测模型的方法学实施和报告完整性,以指导临床实践 | 运动医学中的肌肉骨骼损伤预测模型 | 运动医学 | 肌肉骨骼损伤 | 回归分析、机器学习、深度学习 | 回归模型、机器学习模型、深度学习模型 | NA | 30项研究(204个模型) |
7 | 2024-12-11 |
DMCGNet: A Novel Network for Medical Image Segmentation With Dense Self-Mimic and Channel Grouping Mechanism
2022-10, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2022.3192277
PMID:35939480
|
研究论文 | 提出了一种新的密集自模仿和通道分组机制的网络DMCGNet,用于医学图像分割,以实现更好的特征提取 | 引入了金字塔目标感知密集自模仿模块(PTDSM)和基于通道分割的特征融合模块(CSFFM),并结合深度监督与组集成学习(DSGEL)来增强特征提取和多尺度目标适应性 | 未提及具体限制 | 改进医学图像分割中的特征提取能力 | 医学图像分割任务 | 计算机视觉 | NA | 深度学习 | DMCGNet | 图像 | 4个医学图像分割数据集 |
8 | 2024-12-10 |
Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches
2022-Oct-06, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-022-01868-2
PMID:36201085
|
研究论文 | 本文比较了13种预训练深度学习模型在猴痘病毒检测中的表现 | 提出了一种基于多数投票的集成方法,显著提高了检测性能 | NA | 开发一种高效的猴痘病毒检测方法 | 猴痘病毒 | 机器学习 | NA | 深度学习 | 深度学习模型 | 图像 | 使用了一个公开的数据集 |
9 | 2024-10-06 |
iVaccine-Deep: Prediction of COVID-19 mRNA vaccine degradation using deep learning
2022-Oct, Journal of King Saud University. Computer and information sciences
DOI:10.1016/j.jksuci.2021.10.001
PMID:38620874
|
研究论文 | 研究使用深度学习预测COVID-19 mRNA疫苗降解 | 提出了两种混合深度神经网络模型GCN_GRU和GCN_CNN,并证明GCN_GRU模型在预测RNA降解方面表现更优 | NA | 研究是否可以使用混合深度学习模型预测RNA降解 | COVID-19 mRNA疫苗的降解特性 | 机器学习 | COVID-19 | 深度学习 | GCN_GRU和GCN_CNN | RNA序列 | NA |
10 | 2024-10-02 |
Autonomous Binarized Focal Loss Enhanced Model Compression Design Using Tensor Train Decomposition
2022-Oct-14, Micromachines
IF:3.0Q2
DOI:10.3390/mi13101738
PMID:36296093
|
研究论文 | 本文提出了一种基于张量列车分解的自主二值化焦点损失增强模型压缩设计方法 | 本文创新性地提出了自主二值化焦点损失增强模型压缩(ABFLMC)模型,解决了模型压缩过程中的类别不平衡问题,并引入了动态难度项以提高性能和降低复杂度 | NA | 旨在提高深度学习模型在目标检测任务中的性能,同时降低计算和功耗需求 | 深度学习模型在目标检测任务中的应用 | 机器学习 | NA | 张量列车分解 | ABFLMC | NA | NA |
11 | 2024-10-02 |
Mutual influence between language and perception in multi-agent communication games
2022-10, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1010658
PMID:36315590
|
研究论文 | 本文探讨了深度学习方法在多智能体通信游戏中语言与感知相互影响的研究 | 通过系统地操纵智能体的视觉表示和通信协议,分析了它们对语言和感知的影响,揭示了感知偏差如何塑造语义分类和交流内容 | NA | 研究语言与感知在多智能体通信游戏中的相互影响 | 发送者和接收者智能体在参考游戏中的语言和视觉表示 | 自然语言处理 | NA | 深度学习 | 深度神经网络 | 图像 | NA |
12 | 2024-09-30 |
Cocrystal Prediction of Bexarotene by Graph Convolution Network and Bioavailability Improvement
2022-Oct-16, Pharmaceutics
IF:4.9Q1
DOI:10.3390/pharmaceutics14102198
PMID:36297633
|
研究论文 | 本文开发了一种基于图卷积网络的深度学习模型(CocrystalGCN),用于预测Bexarotene的共晶体,并通过实验验证了其有效性 | 首次使用图卷积网络进行共晶体预测,并成功合成了多种具有改善溶解性和生物利用度的共晶体 | 实验验证的样本数量有限,可能需要进一步扩大样本量以验证模型的普适性 | 提高Bexarotene的水溶性和生物利用度,以改善其临床应用 | Bexarotene及其共晶体 | 药物化学 | 皮肤T细胞淋巴瘤 | 图卷积网络(GCN) | GCN | 分子结构数据 | 109个共晶体候选物中的30个进行了实验验证 |
13 | 2024-09-29 |
Deep learning explains the biology of branched glycans from single-cell sequencing data
2022-Oct-21, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2022.105163
PMID:36217547
|
研究论文 | 本文利用单细胞测序数据和深度学习模型预测细胞的糖链表型,并解释其生物学意义 | 首次使用深度学习模型从转录组数据中预测细胞的糖链表型,并通过SHAP解释模型识别出高预测性基因 | NA | 揭示糖基化在细胞水平的调控机制及其功能意义 | 小鼠T淋巴细胞的糖链表型和转录组数据 | 机器学习 | NA | SUGAR-seq | 深度学习模型 | 转录组数据 | 小鼠T淋巴细胞 |
14 | 2024-09-29 |
Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review
2022-Oct-15, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-022-01870-8
PMID:36241922
|
综述 | 本文回顾了过去五年中使用胸部X光片进行肺结核筛查的深度学习技术的进展 | 本文总结了过去五年中深度学习技术在肺结核筛查中的最新进展,并进行了系统性回顾和元分析 | 本文主要集中在过去五年的研究,可能无法涵盖所有相关研究 | 回顾和分析过去五年中深度学习技术在肺结核筛查中的应用 | 胸部X光片图像和肺结核筛查 | 计算机视觉 | 肺结核 | 深度学习 | 卷积神经网络(CNN) | 图像 | 54篇同行评审的研究文章 |
15 | 2024-09-29 |
AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions
2022-Oct, Ingenierie et recherche biomedicale : IRBM = Biomedical engineering and research
DOI:10.1016/j.irbm.2021.07.002
PMID:34336141
|
综述 | 本文综述了利用人工智能技术从医学影像中检测COVID-19的最新进展和挑战 | 本文总结了当前最先进的深度学习和机器学习模型在COVID-19检测中的应用,并提出了未来可能的研究方向 | 本文主要讨论了技术挑战,未深入探讨伦理和社会影响等非技术挑战 | 旨在评估和总结利用人工智能技术从医学影像中检测COVID-19的最新进展 | COVID-19的检测方法和相关技术 | 计算机视觉 | COVID-19 | 深度学习和机器学习 | CNN、LSTM等 | 医学影像(X射线和CT扫描) | 140篇研究论文 |
16 | 2024-09-29 |
Validation of an autonomous artificial intelligence-based diagnostic system for holistic maculopathy screening in a routine occupational health checkup context
2022-Oct, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
DOI:10.1007/s00417-022-05653-2
PMID:35567610
|
研究论文 | 本研究评估了一种自主人工智能系统在常规职业健康检查中检测眼底摄影中常见中心视网膜病变的能力 | 本研究采用了一种综合的人工智能方法,能够同时高精度检测糖尿病视网膜病变、年龄相关性黄斑变性和痣,并减少了漏诊的风险 | 本研究使用的数据集主要来自职业健康检查,可能限制了其在其他场景中的适用性 | 评估自主人工智能系统在常规职业健康检查中检测眼底摄影中常见中心视网膜病变的能力 | 眼底摄影图像中的糖尿病视网膜病变、年龄相关性黄斑变性、青光眼性视神经病变和痣 | 计算机视觉 | 眼科疾病 | 深度学习 | NA | 图像 | 5918张图像(来自2839名个体) |
17 | 2024-09-26 |
Generalizable deep learning model for early Alzheimer's disease detection from structural MRIs
2022-10-17, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-20674-x
PMID:36253382
|
研究论文 | 本研究开发了一种基于3D深度卷积神经网络的新方法,用于从结构MRI中早期检测阿尔茨海默病 | 提出了基于3D深度卷积神经网络的新方法,能够自动学习识别与阿尔茨海默病相关的成像生物标志物,并实现早期准确检测 | 在检测轻度认知障碍(MCI)时,模型的AUC较低,表明在该任务上仍存在挑战 | 开发一种能够早期检测阿尔茨海默病的深度学习模型 | 阿尔茨海默病、轻度认知障碍和认知正常个体 | 机器学习 | 阿尔茨海默病 | 3D深度卷积神经网络 | CNN | 图像 | 内部验证集来自阿尔茨海默病神经影像学倡议(ADNI),外部独立验证集来自国家阿尔茨海默病协调中心(NACC) |
18 | 2024-09-23 |
Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers
2022-10-28, Nucleic acids research
IF:16.6Q1
DOI:10.1093/nar/gkac881
PMID:36243974
|
研究论文 | 开发了一种名为CITRUS的半解释性神经网络模型,用于在癌症中通过体细胞突变推断转录程序 | 引入自注意力机制来模拟体细胞突变对转录因子的上下文影响,并使用隐藏节点层显式表示转录因子的状态 | NA | 开发一种工具,通过解释体细胞突变在特定转录程序中的影响,促进个性化治疗决策 | 癌症中的体细胞突变和转录程序 | 机器学习 | NA | 自注意力机制 | 神经网络 | 基因组、转录组和表观基因组数据 | 17种癌症类型的数据 |
19 | 2024-09-23 |
3Din vivodose verification in prostate proton therapy with deep learning-based proton-acoustic imaging
2022-10-27, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ac9881
PMID:36206745
|
研究论文 | 本文开发了一种基于深度学习的质子-声学成像方法,用于解决前列腺质子治疗中剂量验证的有限视角问题 | 提出了一种深度级联卷积神经网络(DC-CNN),用于重建高质量的辐射诱导压力,并从压力中推导出精确的3D剂量 | 研究仅限于前列腺癌患者,且样本量相对较小 | 提高质子治疗中剂量验证的准确性 | 前列腺癌患者的质子治疗剂量 | 计算机视觉 | 前列腺癌 | 质子-声学成像 | 深度级联卷积神经网络(DC-CNN) | 图像 | 81名前列腺癌患者的治疗计划,其中69名用于训练,12名用于测试 |
20 | 2024-09-23 |
Emerging dominant SARS-CoV-2 variants
2022-Oct-18, ArXiv
PMID:36299737
|
研究论文 | 本文利用人工智能模型预测SARS-CoV-2新变种的出现及其对感染的影响 | 结合生物物理学、基因分型、实验数据、代数拓扑和深度学习构建AI模型,准确预测了SARS-CoV-2变种的出现 | NA | 预测SARS-CoV-2新变种的出现,为政策制定者和疫苗制造商提供准备 | SARS-CoV-2病毒及其变种的感染性和抗体抵抗性 | 机器学习 | NA | 深度学习 | AI模型 | 基因组数据 | NA |