深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202211-202211] [清除筛选条件]
当前共找到 139 篇文献,本页显示第 41 - 60 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
41 2024-11-06
S2C-DeLeNet: A parameter transfer based segmentation-classification integration for detecting skin cancer lesions from dermoscopic images
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种基于参数迁移的分割-分类集成网络S2C-DeLeNet,用于从皮肤镜图像中检测皮肤癌病变 该网络通过分割子网络对病变区域进行分割,并利用迁移的参数进行分类,具有较高的准确性和泛化能力 NA 开发一种高效的深度学习方法,用于自动检测皮肤癌病变 皮肤镜图像中的皮肤癌病变 计算机视觉 皮肤癌 深度学习 卷积神经网络 图像 使用了公开可用的数据集进行训练和验证
42 2024-11-06
GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于图神经网络和自注意力机制的可解释药物-靶点结合亲和力预测模型GSAML-DTA GSAML-DTA结合了自注意力机制和图神经网络,并引入互信息来过滤冗余信息,保留相关信息,从而提高了预测性能 NA 开发一种可解释的深度学习框架,用于预测药物-靶点结合亲和力 药物和靶点蛋白的结合亲和力 机器学习 NA 图神经网络(GNNs) 自注意力机制 结构信息 两个基准数据集
43 2024-11-06
Concatenated Xception-ResNet50 - A novel hybrid approach for accurate skin cancer prediction
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种结合Xception和ResNet50的混合深度学习模型,用于皮肤癌的准确预测 本文的创新点在于将Xception和ResNet50两种强大的网络结构结合起来,形成了一种新的混合模型,显著提高了皮肤癌的预测准确率 本文的局限性在于仅使用了HAM10000数据集进行评估,可能存在数据集偏差问题 本文的研究目的是开发一种高精度的深度学习模型,用于早期诊断和分级皮肤癌 本文的研究对象是皮肤癌及其不同类型的肿瘤,包括基底细胞癌、黑色素瘤、黑素细胞痣、皮肤纤维瘤、光化性角化病、上皮内癌、血管性和非癌性良性角化病样病变 计算机视觉 皮肤癌 深度学习 混合模型(Xception-ResNet50) 图像 10,500张皮肤图像
44 2024-11-06
Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文介绍了一个名为Cx22的新公开数据集,用于基于深度学习的宫颈细胞学图像分割 开发了一个新的公开数据集Cx22,包含14,946个细胞实例的完全注释标签,基于先前由我们研究所发布的开源图像 数据集可能受到假阴性对象问题的影响,影响基线方法的性能 提供一个高质量的数据集,以促进基于深度学习的宫颈细胞学图像分割方法的研究 宫颈细胞学图像的分割 计算机视觉 宫颈癌 深度学习 NA 图像 1320张图像,包含14,946个细胞实例
45 2024-11-06
LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种基于Inception V3网络的光色分离分支模型LCSB-Inception,用于从胸部X光图像中检测COVID-19 采用CIE LAB坐标系将RGB图像转换为L和AB通道,减少了模型参数,并引入了全局二阶池化以增强特征提取能力 NA 提供一种准确且高效的COVID-19检测方法,减少计算成本 胸部X光图像中的COVID-19特征 计算机视觉 COVID-19 Inception V3网络 CNN 图像 两个数据集:chestX-ray-15k (Data_1) 和 COVID-19 Radiography dataset (Data_2)
46 2024-11-06
Segmentation of kidney mass using AgDenseU-Net 2.5D model
2022-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种使用AgDenseU-Net 2.5D模型进行肾脏肿块分割的方法 本文创新性地使用AgDenseU-Net 2.5D模型进行肾脏、肿瘤和囊肿的精细分割,并通过自动下采样方法减少计算资源消耗 本文未详细讨论模型的泛化能力和在其他数据集上的表现 旨在提高肾脏肿块分割的准确性和效率,同时降低计算资源成本 肾脏、肿瘤和囊肿的分割 计算机视觉 NA 深度学习 AgDenseU-Net 2.5D CT图像 300名患者的肾脏CT数据
47 2024-10-30
OrganoID: A versatile deep learning platform for tracking and analysis of single-organoid dynamics
2022-11, PLoS computational biology IF:3.8Q1
研究论文 本文介绍了一个名为OrganoID的深度学习平台,用于自动识别、标记和跟踪单个类器官在明场和相衬显微镜实验中的动态变化 OrganoID平台能够自动分析类器官的数量、大小和形态变化,无需手动调整参数,且在多种癌症类器官图像上验证了其准确性 NA 开发一个自动化的图像分析平台,以加速类器官在高通量、数据密集型生物医学应用中的使用 胰腺癌、肺癌、结肠癌和腺样囊性癌的类器官 计算机视觉 NA 深度学习 NA 图像 NA
48 2024-10-18
Multivendor Comparison of Quantification Accuracy of Iodine Concentration and Attenuation Measurements by Dual-Energy CT: A Phantom Study
2022-11, AJR. American journal of roentgenology
研究论文 本研究比较了不同供应商、技术和代次的12种双能CT(DECT)扫描仪在碘浓度和衰减测量方面的定量准确性 本研究设计了一个包含七种不同碘浓度的质量控制幻影,并使用了多种扫描条件和重建算法,包括深度学习图像重建(DLIR),以评估不同DECT配置的定量准确性 本研究仅限于使用特定的质量控制幻影和有限的扫描条件,未涵盖所有可能的临床应用场景 比较不同供应商、技术和代次的双能CT扫描仪在碘浓度和衰减测量方面的定量准确性 双能CT扫描仪的定量准确性 医学影像 NA 双能CT(DECT) 深度学习图像重建(DLIR) 影像 12种不同扫描仪配置
49 2024-10-18
Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study
2022-11, AJR. American journal of roentgenology
研究论文 评估人工智能辅助平台在临床工作流程中对胸部CT解读时间的影响 研究展示了在真实临床环境中,使用自动化AI平台辅助胸部CT解读可以显著减少放射科医生的解读时间 研究仅在一个中心进行,样本量有限,且仅涉及三位放射科医生 评估AI辅助平台对胸部CT解读时间的影响 胸部CT扫描的解读时间 计算机视觉 NA 深度学习 卷积神经网络 图像 390名患者(204名女性,186名男性;平均年龄62.8 ± 13.3岁)
50 2024-10-06
PAN-cODE: COVID-19 forecasting using conditional latent ODEs
2022-11-14, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
研究论文 本文介绍了一种名为PAN-cODE的深度学习方法,用于预测COVID-19的每日感染和死亡人数 PAN-cODE使用深度条件潜在变量模型,能够基于不同的非药物干预措施生成不同的病例轨迹,并允许对训练期间未见过的地区进行病例估计 尽管使用了较少详细数据且训练过程完全自动化,PAN-cODE的性能与最先进的方法相当,但未提及具体的局限性 开发一种数据驱动的模型来预测COVID-19的传播,以支持政策决策 COVID-19的每日感染和死亡人数 机器学习 COVID-19 深度学习 条件潜在ODE模型 时间序列数据 未明确提及具体样本数量
51 2024-09-30
DLBLS_SS: protein secondary structure prediction using deep learning and broad learning system
2022-Nov-22, RSC advances IF:3.9Q2
研究论文 本文提出了一种基于深度学习和广义学习系统的蛋白质二级结构预测模型DLBLS_SS 结合双向长短期记忆网络和时间卷积网络与通道注意力机制,以及广义学习系统来优化特征并捕捉残基间的局部相互作用 NA 提高蛋白质二级结构预测的准确性 蛋白质的3-state和8-state二级结构 机器学习 NA 深度学习 BLSTM, TCN, BLS 序列 包括CASP10, CASP11, CASP12, CASP13, CASP14和CB513的公共测试集
52 2024-09-30
Deep Learning Techniques to Diagnose Lung Cancer
2022-Nov-13, Cancers IF:4.5Q1
研究论文 本文介绍了基于深度学习的医学影像技术在早期肺癌诊断中的最新进展 利用深度学习技术自动分类癌症图像,提高肺癌诊断的敏感性和准确性 现有技术无法自动分类癌症图像,不适用于其他病理的患者 开发一种敏感且准确的早期肺癌诊断方法 肺癌的早期诊断 计算机视觉 肺癌 深度学习 NA 医学影像 NA
53 2024-09-29
Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)
2022-Nov-10, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文介绍了一种基于深度学习的增强型多参数动态体积光声计算机断层扫描技术(DL-PACT),通过减少有限视角伪影和提高时间分辨率,显著提升了光声计算机断层扫描(PACT)的图像质量 提出了一种基于深度学习的DL-PACT方法,通过使用少量超声换能器元素,实现了高质量的静态结构和动态增强全身图像以及动态功能脑图像的快速获取 NA 提高光声计算机断层扫描(PACT)的图像质量和时间分辨率,降低系统成本 光声计算机断层扫描(PACT)图像的增强和优化 计算机视觉 NA 光声计算机断层扫描(PACT) 深度学习 图像 活体动物和人类
54 2024-09-23
Self-supervised learning of neighborhood embedding for longitudinal MRI
2022-11, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种新的自监督学习方法,用于从纵向MRI中提取邻域嵌入,以捕捉脑老化和疾病进展 本文的创新点在于提出了Longitudinal Neighborhood Embedding (LNE)方法,通过在潜在空间中构建年龄一致和进展一致的邻域,改进了脑老化特征的表示 NA 研究目的是改进脑老化特征的表示,以提高下游任务的性能 研究对象包括健康受试者、阿尔茨海默病和轻度认知障碍患者以及青少年酒精饮用者 计算机视觉 神经退行性疾病 MRI 自监督学习 图像 274名健康受试者,632名阿尔茨海默病和轻度认知障碍患者,764名青少年酒精饮用者
55 2024-09-23
A Blood-Based Metabolite Panel for Distinguishing Ovarian Cancer from Benign Pelvic Masses
2022-11-01, Clinical cancer research : an official journal of the American Association for Cancer Research IF:10.0Q1
研究论文 研究评估了循环代谢物对卵巢癌风险预测算法的改进作用 开发了一个基于血液的代谢物面板,用于区分早期卵巢癌和良性盆腔肿块,并改进了现有的卵巢癌风险预测算法 NA 评估循环代谢物对卵巢癌风险预测算法的改进作用 早期卵巢癌和良性盆腔肿块 NA 卵巢癌 代谢组学分析 深度学习模型 血液样本 202个卵巢癌病例和190个良性盆腔肿块病例
56 2024-09-23
Fairness-related performance and explainability effects in deep learning models for brain image analysis
2022-Nov, Journal of medical imaging (Bellingham, Wash.)
研究论文 研究深度学习模型在脑图像分析中的公平性和可解释性影响 首次探讨了可解释人工智能(XAI)方法中不公平表现的体现,并展示了XAI如何用于调查潜在的不公平原因 研究样本仅限于9至10岁的青少年,且仅分析了性别和种族的交叉影响 分析社会人口统计学相关混杂因素对分类器性能和可解释性方法的影响 T1加权脑MRI数据集中的4547名9至10岁青少年 计算机视觉 NA 卷积神经网络(CNN) CNN 图像 4547名9至10岁青少年
57 2024-09-20
Near-Field Microwave Scattering Formulation by A Deep Learning Method
2022-Nov, IEEE transactions on microwave theory and techniques IF:4.1Q2
研究论文 本文应用深度学习方法对微波乳房成像中的电磁散射进行建模 本文首次将深度学习方法应用于微波乳房成像中的电磁散射建模,并展示了其计算速度上的显著优势 深度学习方法产生的误差对图像结果影响不大,但仍需进一步验证其在不同条件下的表现 探索深度学习在电磁散射计算中的应用潜力 微波乳房成像中的电磁散射 机器学习 NA 深度学习 神经网络 (NN) 图像 18,000个合成数字乳房幻影
58 2024-09-19
High-Performance Statistical Computing in the Computing Environments of the 2020s
2022-Nov, Statistical science : a review journal of the Institute of Mathematical Statistics IF:3.9Q1
综述 本文从统计计算的角度回顾了过去十年在硬件和软件方面的技术进步,特别是高性能计算(HPC)的普及和深度学习软件库的发展 首次展示了在如此大规模下进行惩罚回归分析生存结果的可行性 未提及 探讨技术进步如何使统计学家受益,并展示这些发展在高维模型优化算法中的应用 高性能计算环境下的统计计算方法和应用 统计计算 糖尿病 高性能计算(HPC) 惩罚回归模型 基因数据 200,000名受试者和约500,000个单核苷酸多态性
59 2024-09-17
Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI-based deep learning features
2022-Nov, Medical physics IF:3.2Q1
研究论文 本文介绍了一种新的深度学习架构,用于预测脑转移瘤在接受立体定向放疗后的局部控制/失败结果,使用治疗计划磁共振成像(MRI)和标准临床属性 本文提出了一种结合临床和MRI深度学习特征的新型深度学习架构,用于预测脑转移瘤的放疗结果 研究样本量较小,仅包括99名患者的数据,未来需要在更大规模的患者群体中进行验证 预测脑转移瘤在接受立体定向放疗后的局部控制/失败结果 脑转移瘤患者在接受立体定向放疗后的局部控制/失败结果 计算机视觉 脑肿瘤 深度学习 InceptionResentV2网络、长短期记忆循环网络 MRI图像、临床数据 99名患者(116个病灶)用于训练和优化,25名患者(40个病灶)用于独立测试
60 2024-09-17
Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto-contouring
2022-Nov, Medical physics IF:3.2Q1
研究论文 本文提出了一种结合自然智能和人工智能的混合智能系统,用于颈部和胸部CT图像的自动解剖结构分割 通过将自然智能融入人工智能方法,克服了现有基于深度学习的自动分割方法在获取高级解剖信息方面的不足 系统在不同临床中心的接受度评分存在显著差异 开发一种结合自然智能和人工智能的混合智能系统,用于CT图像中的器官分割,并应用于放射治疗计划 颈部和胸部的26个器官 计算机视觉 NA 深度学习 混合智能系统 CT图像 464名患者的数据用于测试,125名患者的数据用于训练/模型构建
回到顶部