本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121 | 2024-08-29 |
Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning
2022-Dec-01, Machine learning: science and technology
DOI:10.1088/2632-2153/ac9bcc
PMID:36698865
|
研究论文 | 本研究提出了一种基于生物物理特征的机器学习方法,用于乳腺癌检测,旨在提高诊断性能并提供恶性概率的彩色叠加视觉图。 | 本研究通过结合原始超声参数和机器学习方法,提高了乳腺癌诊断的准确性,并提供了恶性概率的彩色叠加视觉图。 | NA | 提高超声乳腺检查的诊断准确性。 | 乳腺癌检测。 | 机器学习 | 乳腺癌 | 超声 | 支持向量机 | 图像 | 150个乳腺病变样本 |
122 | 2024-08-07 |
Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans Using Deep Learning in a Single Multi-Task Framework
2022-Dec, Reviews in cardiovascular medicine
IF:1.9Q3
DOI:10.31083/j.rcm2312412
PMID:39076659
|
研究论文 | 本文提出了一种基于深度学习框架的自动量化心脏CT扫描中心外膜脂肪组织体积和密度的方法 | 该研究首次在一个多任务框架中使用深度学习技术自动量化心外膜脂肪组织体积和密度,提高了量化任务的自动化程度和分析效率 | NA | 开发一种完全自动化的深度学习框架,用于量化心外膜脂肪组织体积和密度 | 心外膜脂肪组织体积和密度 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN | 图像 | 300名患者的数据集,分为两个子集,每个子集包含150名患者,分别用于训练和评估模型 |
123 | 2024-08-07 |
Deep residual inception encoder-decoder network for amyloid PET harmonization
2022-12, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.12564
PMID:35142053
|
研究论文 | 本文开发并验证了一种深度学习模型,用于协调使用不同示踪剂的淀粉样蛋白PET图像 | 提出了一种基于编码器-解码器的深度残差初始网络,用于协调不同示踪剂的淀粉样蛋白PET图像 | 需要进一步改进模型并应用于其他示踪剂 | 开发一种协调策略,用于解决不同正电子发射断层扫描(PET)示踪剂在淀粉样蛋白成像中的共识解释和定量分析挑战 | 使用匹兹堡化合物B和氟贝他匹的淀粉样蛋白PET图像 | 计算机视觉 | NA | 深度学习 | 深度残差初始编码器-解码器神经网络 | 图像 | 训练集包含92名受试者,外部测试集包含46名受试者 |
124 | 2024-08-07 |
Variability analysis of LC-MS experimental factors and their impact on machine learning
2022-12-28, GigaScience
IF:11.8Q1
DOI:10.1093/gigascience/giad096
PMID:37983748
|
研究论文 | 本文通过系统分析公共质谱数据仓库中的变异源,探讨了这些因素对机器学习性能的影响,并进行了全面的迁移学习评估 | 本文首次系统分析了公共质谱数据仓库中的变异源,并评估了迁移学习在质谱数据处理中的应用效果 | 迁移学习虽然提高了模型性能,但与非预训练模型相比提升有限 | 旨在促进机器学习在质谱数据处理中的应用 | 公共质谱数据仓库中的变异源及其对机器学习性能的影响 | 机器学习 | NA | 质谱(MS) | 深度学习(DL) | 质谱数据 | 大规模数据集 |
125 | 2024-08-07 |
Towards automated organs at risk and target volumes contouring: Defining precision radiation therapy in the modern era
2022-Dec, Journal of the National Cancer Center
IF:7.6Q1
DOI:10.1016/j.jncc.2022.09.003
PMID:39036546
|
review | 本文综述了利用先进深度学习、语义器官解析、多模态影像融合、神经架构搜索和医学图像分析技术解决精确放疗工作流程中四个关键问题或子问题的最新进展 | 提出了高精度、自动化和高度可重复的OAR/GTV/LN/CTV自动描绘技术,有效减少了从业者间的变异性并降低了时间成本 | 本文综述的内容是持续进行且不完全的,方法主要以食管癌和头颈癌为例,但可推广至其他类型癌症 | 探讨精确放疗在现代临床工作流程中的应用,旨在提高患者护理质量和降低成本 | 主要关注风险器官(OARs)、大体肿瘤体积(GTV)、转移淋巴结(LN)和临床肿瘤体积(CTV)的分割与检测 | machine learning | esophageal cancer, head-and-neck cancer | deep learning, semantic organ parsing, multimodal imaging fusion, neural architecture search, medical image analytical techniques | NA | image | NA |
126 | 2024-08-07 |
DEEP LEARNING ALGORITHMS HAVE HIGH ACCURACY FOR AUTOMATED LANDMARK DETECTION ON 2D LATERAL CEPHALOGRAMS
2022-Dec, The journal of evidence-based dental practice
IF:4.1Q1
DOI:10.1016/j.jebdp.2022.101798
PMID:36494109
|
meta-analysis | 本文通过系统综述和荟萃分析,评估了深度学习算法在二维侧位头颅摄影中自动识别地标点的准确性 | NA | NA | 评估深度学习算法在头颅摄影地标检测中的准确性 | 深度学习算法在头颅摄影地标检测中的应用 | computer vision | NA | 深度学习 | NA | image | NA |
127 | 2024-08-07 |
DEEP LEARNING ALGORITHMS SHOW SOME POTENTIAL AS AN ADJUNCTIVE TOOL IN CARIES DIAGNOSIS
2022-Dec, The journal of evidence-based dental practice
IF:4.1Q1
DOI:10.1016/j.jebdp.2022.101772
PMID:36494110
|
综述 | 本文系统回顾了深度学习算法在龋齿检测中的应用 | NA | NA | 探讨深度学习算法在龋齿诊断中的潜在应用 | 深度学习算法在龋齿检测中的应用 | 机器学习 | 口腔疾病 | 深度学习 | NA | NA | NA |
128 | 2024-08-07 |
Autoencoders for sample size estimation for fully connected neural network classifiers
2022-Dec-13, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-022-00728-0
PMID:36513729
|
研究论文 | 研究如何利用自编码器损失来估计全连接神经网络分类器所需的最小标记训练数据样本量 | 提出了一种基于自编码器损失的估计方法,用于确定全连接神经网络分类器所需的最小标记数据样本量,这是一种在深度学习领域中尚未充分研究的方法 | 研究主要集中在全连接神经网络分类器上,可能不适用于其他类型的深度学习模型 | 探索在计算机视觉模型训练前,如何通过自编码器损失来估计所需的最小标记数据样本量 | 全连接神经网络分类器所需的最小标记训练数据样本量 | 计算机视觉 | NA | 自编码器 | 全连接神经网络 | 图像 | 研究中未具体提及样本数量,但讨论了最小收敛样本(MCS)的概念 |
129 | 2024-08-07 |
Predicting hypertension onset from longitudinal electronic health records with deep learning
2022-Dec, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooac097
PMID:36448021
|
研究论文 | 本研究利用深度学习中的长短期记忆网络(LSTM)从电子健康记录(EHRs)中预测高血压的发病 | 本研究首次采用LSTM网络结合纵向EHRs数据来预测高血压的发病,并与其他模型如XGboost进行比较 | NA | 预测高血压的发病 | 高血压的发病风险及相关的驱动因素 | 机器学习 | 心血管疾病 | 深度学习 | LSTM | 电子健康记录 | 233,895名成年患者 |
130 | 2024-08-05 |
Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis
2022-Dec, Journal of medical artificial intelligence
DOI:10.21037/jmai-22-36
PMID:36861064
|
系统评价和Meta分析 | 本文章系统评估深度学习在冠状动脉解剖成像中的应用及其准确性. | 本文提供了对深度学习在冠状动脉解剖成像中应用的全面分析,并展示了CNN模型在此领域的强大性能. | 大多数研究的外部验证尚未进行,临床应用准备不足. | 评估深度学习应用于冠状动脉解剖成像的准确性. | 应用深度学习技术进行冠状动脉解剖成像的相关研究. | 医学成像 | 冠状动脉疾病 | 深度学习, 具体为卷积神经网络(CNN) | CNN | 医学影像 | 81项研究符合纳入标准 |
131 | 2024-08-05 |
A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution
2022-12, Nature neuroscience
IF:21.2Q1
DOI:10.1038/s41593-022-01189-0
PMID:36424431
|
研究论文 | 这篇文章提出了一种深度学习框架,用于从具有亚帧时间分辨率的钙成像中推断单次试验神经群体动态 | 该研究开发了RADICaL方法,以解决利用钙信号推断网络动态中的噪声和时间分辨率限制 | 研究主要集中在合成测试上,实际应用可能面临的挑战未完全探讨 | 研究旨在提高从钙成像中推断神经网络状态的精度 | 使用进行前肢到达任务的小鼠的2p钙成像数据 | 神经科学 | NA | 钙成像 | 递归自编码器 | 钙成像数据 | 小鼠的2p记录数据,样本量未具体描述 |
132 | 2024-08-07 |
A unifying Bayesian framework for merging X-ray diffraction data
2022-12-15, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-022-35280-8
PMID:36522310
|
研究论文 | 本文提出了一种统一的贝叶斯框架,用于合并X射线衍射数据,通过深度学习和变分推断同时重新缩放和合并反射观测 | 利用深度学习和变分推断技术,提出了一种新的贝叶斯方法来处理和合并X射线衍射数据中的反射观测 | NA | 开发一种新的方法来处理和合并X射线衍射数据,以更准确地检测生物分子功能动态中的细微构象变化 | X射线衍射数据中的反射观测 | 计算机视觉 | NA | X射线衍射 | 深度学习 | 衍射数据 | NA |
133 | 2024-08-07 |
Region of interest-specific loss functions improve T2 quantification with ultrafast T2 mapping MRI sequences in knee, hip and lumbar spine
2022-12-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-26266-z
PMID:36564430
|
研究论文 | 本文提出了一种针对加速采集的区域兴趣特定后处理方法,使用循环UNet深度学习架构,从加速的T准备快照梯度回波采集序列中提供膝关节软骨、髋关节软骨和腰椎间盘的T2图谱,通过多组件损失函数优化软骨和间盘性能。 | 本文创新性地引入了区域兴趣特定损失函数,以优化软骨和间盘的重建性能,并提出了一种基于灰度共生矩阵的评估方案。 | NA | 旨在改进T2量化技术,通过区域兴趣特定损失函数提高MRI T2图谱序列在膝关节、髋关节和腰椎的量化准确性。 | 研究对象包括膝关节软骨、髋关节软骨和腰椎间盘。 | 计算机视觉 | NA | MRI | 循环UNet | 图像 | 研究涵盖了从加速因子R=2到R=12的不同情况。 |
134 | 2024-08-07 |
Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies
2022-12-07, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/40589
PMID:36476515
|
综述 | 本文通过综述分析了人工智能在肥胖研究中的应用方法 | 介绍了多模态或多任务AI模型、合成数据生成和人在回路等新兴趋势 | 部分研究显示不同AI模型性能在不同数据集和任务上的结果不一 | 为研究人员和从业者提供AI在肥胖研究中的应用概览,并促进AI技术的采用 | 肥胖研究中的人工智能应用 | 机器学习 | 肥胖 | 机器学习(ML)和深度学习(DL) | ML和DL模型 | 表格数据、图像和文本数据 | 46项研究 |