深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202212-202212] [清除筛选条件]
当前共找到 147 篇文献,本页显示第 141 - 147 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
141 2024-08-07
Autoencoders for sample size estimation for fully connected neural network classifiers
2022-Dec-13, NPJ digital medicine IF:12.4Q1
研究论文 研究如何利用自编码器损失来估计全连接神经网络分类器所需的最小标记训练数据样本量 提出了一种基于自编码器损失的估计方法,用于确定全连接神经网络分类器所需的最小标记数据样本量,这是一种在深度学习领域中尚未充分研究的方法 研究主要集中在全连接神经网络分类器上,可能不适用于其他类型的深度学习模型 探索在计算机视觉模型训练前,如何通过自编码器损失来估计所需的最小标记数据样本量 全连接神经网络分类器所需的最小标记训练数据样本量 计算机视觉 NA 自编码器 全连接神经网络 图像 研究中未具体提及样本数量,但讨论了最小收敛样本(MCS)的概念
142 2024-08-07
Predicting hypertension onset from longitudinal electronic health records with deep learning
2022-Dec, JAMIA open IF:2.5Q3
研究论文 本研究利用深度学习中的长短期记忆网络(LSTM)从电子健康记录(EHRs)中预测高血压的发病 本研究首次采用LSTM网络结合纵向EHRs数据来预测高血压的发病,并与其他模型如XGboost进行比较 NA 预测高血压的发病 高血压的发病风险及相关的驱动因素 机器学习 心血管疾病 深度学习 LSTM 电子健康记录 233,895名成年患者
143 2024-08-05
Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis
2022-Dec, Journal of medical artificial intelligence
系统评价和Meta分析 本文章系统评估深度学习在冠状动脉解剖成像中的应用及其准确性. 本文提供了对深度学习在冠状动脉解剖成像中应用的全面分析,并展示了CNN模型在此领域的强大性能. 大多数研究的外部验证尚未进行,临床应用准备不足. 评估深度学习应用于冠状动脉解剖成像的准确性. 应用深度学习技术进行冠状动脉解剖成像的相关研究. 医学成像 冠状动脉疾病 深度学习, 具体为卷积神经网络(CNN) CNN 医学影像 81项研究符合纳入标准
144 2024-08-05
A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution
2022-12, Nature neuroscience IF:21.2Q1
研究论文 这篇文章提出了一种深度学习框架,用于从具有亚帧时间分辨率的钙成像中推断单次试验神经群体动态 该研究开发了RADICaL方法,以解决利用钙信号推断网络动态中的噪声和时间分辨率限制 研究主要集中在合成测试上,实际应用可能面临的挑战未完全探讨 研究旨在提高从钙成像中推断神经网络状态的精度 使用进行前肢到达任务的小鼠的2p钙成像数据 神经科学 NA 钙成像 递归自编码器 钙成像数据 小鼠的2p记录数据,样本量未具体描述
145 2024-08-07
A unifying Bayesian framework for merging X-ray diffraction data
2022-12-15, Nature communications IF:14.7Q1
研究论文 本文提出了一种统一的贝叶斯框架,用于合并X射线衍射数据,通过深度学习和变分推断同时重新缩放和合并反射观测 利用深度学习和变分推断技术,提出了一种新的贝叶斯方法来处理和合并X射线衍射数据中的反射观测 NA 开发一种新的方法来处理和合并X射线衍射数据,以更准确地检测生物分子功能动态中的细微构象变化 X射线衍射数据中的反射观测 计算机视觉 NA X射线衍射 深度学习 衍射数据 NA
146 2024-08-07
Region of interest-specific loss functions improve T2 quantification with ultrafast T2 mapping MRI sequences in knee, hip and lumbar spine
2022-12-23, Scientific reports IF:3.8Q1
研究论文 本文提出了一种针对加速采集的区域兴趣特定后处理方法,使用循环UNet深度学习架构,从加速的T准备快照梯度回波采集序列中提供膝关节软骨、髋关节软骨和腰椎间盘的T2图谱,通过多组件损失函数优化软骨和间盘性能。 本文创新性地引入了区域兴趣特定损失函数,以优化软骨和间盘的重建性能,并提出了一种基于灰度共生矩阵的评估方案。 NA 旨在改进T2量化技术,通过区域兴趣特定损失函数提高MRI T2图谱序列在膝关节、髋关节和腰椎的量化准确性。 研究对象包括膝关节软骨、髋关节软骨和腰椎间盘。 计算机视觉 NA MRI 循环UNet 图像 研究涵盖了从加速因子R=2到R=12的不同情况。
147 2024-08-07
Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies
2022-12-07, Journal of medical Internet research IF:5.8Q1
综述 本文通过综述分析了人工智能在肥胖研究中的应用方法 介绍了多模态或多任务AI模型、合成数据生成和人在回路等新兴趋势 部分研究显示不同AI模型性能在不同数据集和任务上的结果不一 为研究人员和从业者提供AI在肥胖研究中的应用概览,并促进AI技术的采用 肥胖研究中的人工智能应用 机器学习 肥胖 机器学习(ML)和深度学习(DL) ML和DL模型 表格数据、图像和文本数据 46项研究
回到顶部