深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202301] [清除筛选条件]
当前共找到 401 篇文献,本页显示第 241 - 260 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
241 2024-09-19
Comparative analysis of tissue-specific genes in maize based on machine learning models: CNN performs technically best, LightGBM performs biologically soundest
2023, Frontiers in genetics IF:2.8Q2
研究论文 本研究通过机器学习模型对玉米组织特异性基因进行比较分析,发现CNN在技术上表现最佳,而LightGBM在生物学上表现最合理 首次在植物领域使用多种机器学习模型(包括CNN和LightGBM)对RNA-seq数据进行分析,以识别组织特异性基因 研究仅限于玉米的多组织RNA-seq数据,未涉及其他植物或动物的数据 通过机器学习模型识别玉米组织特异性基因,并比较不同模型在技术与生物学上的表现 玉米的多组织RNA-seq数据和组织特异性基因 机器学习 NA RNA-seq CNN, LightGBM RNA-seq数据 1548个玉米多组织RNA-seq数据 NA NA NA NA
242 2024-09-19
Application of Convolutional Neural Networks for COVID-19 Detection in X-ray Images Using InceptionV3 and U-Net
2023, New generation computing IF:2.0Q2
研究论文 本文探讨了使用InceptionV3和U-Net卷积神经网络模型在X光图像中检测COVID-19的应用 提出了结合InceptionV3和U-Net模型进行COVID-19检测的新方法,并实现了高达99%的准确率 未提及具体的局限性 开发快速且易于使用的COVID-19诊断工具,以替代传统的RT-PCR方法 COVID-19在X光图像中的检测 计算机视觉 COVID-19 卷积神经网络(CNN) InceptionV3和U-Net 图像 未提及具体样本数量 NA NA NA NA
243 2024-09-19
Detecting influential nodes with topological structure via Graph Neural Network approach in social networks
2023, International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
研究论文 本文提出了一种基于图卷积网络(GCN)的深度学习模型DeepInfNode,用于在社交网络中检测具有重要拓扑结构的关键节点 本文创新性地结合了网络拓扑和节点属性来评估节点的影响力,并提出了DeepInfNode模型,该模型在多个公开的标准图数据集上表现优于现有方法 NA 研究目的是开发一种能够有效检测社交网络中关键节点的方法 研究对象是社交网络中的节点及其拓扑结构 机器学习 NA 图卷积网络(GCN) 图卷积网络(GCN) 图数据 使用了多个公开的标准图数据集 NA NA NA NA
244 2024-09-19
Automated semantic lung segmentation in chest CT images using deep neural network
2023, Neural computing & applications IF:4.5Q2
研究论文 本文开发了一种用于胸部CT图像中肺部分割的深度学习模型 提出了使用DeepLabV3+网络进行两类和四类肺部分割的方法,并比较了不同预训练网络的性能 仅使用了COVID-19的公开数据库,可能缺乏泛化性 开发一种计算效率高且鲁棒的深度学习模型用于肺部分割 胸部CT图像中的肺部区域 计算机视觉 NA DeepLabV3+网络 DeepLabV3+ 图像 750张胸部CT图像及其对应的像素标注图像 NA NA NA NA
245 2024-09-17
A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA
2023, International journal of data science and analytics IF:3.4Q2
研究论文 本文提出了一种基于时空机器学习的COVID-19发病率预测方法,特别针对美国县级水平 本文首次提出了COVID-LSTM模型,该模型基于长短期记忆深度学习架构,能够更准确地预测COVID-19的发病率,优于现有的COVIDhub-ensemble模型 本文未详细讨论数据驱动预测方法在其他疾病中的应用限制,也未深入探讨未来深度学习模型在疾病预测中的广泛应用可能性 研究目的是开发一种更准确的COVID-19发病率预测模型,以应对全球疫情的影响 研究对象是美国各县的COVID-19发病率 机器学习 传染病 长短期记忆(LSTM)深度学习 LSTM 时间序列数据 17周的评估期,4周的预测期 NA NA NA NA
246 2024-09-17
DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization From Resting-State fMRI Connectivity
2023-01, IEEE transactions on bio-medical engineering
研究论文 本文提出了一种基于静息态功能磁共振成像(rs-fMRI)数据的深度学习方法,用于自动定位癫痫发作区(EZ) 首次使用图卷积网络(GCN)进行EZ定位,并结合领域特定信息和学习到的个体偏差来提高准确性 研究样本量较小,仅包含14名患者,未来需在大规模数据集上验证 开发一种准确且无创的EZ定位工具,用于药物难治性癫痫的治疗计划 药物难治性癫痫患者的EZ定位 计算机视觉 癫痫 图卷积网络(GCN) 图卷积网络(GCN) 功能磁共振成像(fMRI) 14名患有局灶性癫痫的患者 NA NA NA NA
247 2024-09-17
Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review
2023-01, Journal of neuroimaging : official journal of the American Society of Neuroimaging IF:2.3Q2
综述 本文综述了功能性磁共振成像(fMRI)和深度学习在阿尔茨海默病(AD)诊断中的应用 探讨了深度学习技术在简化fMRI分析中的潜力,并总结了当前领域的研究进展 讨论了fMRI深度学习方法的局限性和未来研究方向 总结当前fMRI和深度学习在AD诊断中的应用,并为新研究人员提供指导 阿尔茨海默病(AD)的诊断方法 机器学习 阿尔茨海默病 功能性磁共振成像(fMRI) 深度神经网络 图像 NA NA NA NA NA
248 2024-09-17
Integration of improved YOLOv5 for face mask detector and auto-labeling to generate dataset for fighting against COVID-19
2023, The Journal of supercomputing IF:2.5Q2
研究论文 本文提出了一种改进的YOLOv5模型用于口罩检测,并结合自动标注模块生成新的数据集,以应对COVID-19疫情 通过引入坐标注意力(CA)模块改进YOLOv5模型,提高了检测精度和速度,并构建了一个包含7110张图像的新数据集 实验仅使用了Kaggle数据集中的853张图像进行训练,且数据集来源有限 提高口罩检测系统的实时性能和准确性,并生成新的数据集以支持COVID-19监测系统 口罩检测模型和数据集生成系统 计算机视觉 NA YOLOv5 YOLOv5s-CA和YOLOV5s-C3CA 图像 853张图像用于训练,7110张图像用于生成新数据集 NA NA NA NA
249 2024-09-17
Active regression model for clinical grading of COVID-19
2023, Frontiers in immunology IF:5.7Q1
研究论文 本研究构建了一个基于深度学习方法的个性化治疗模型,旨在通过COVID-19患者的临床检测指标数据实现及时干预,并优化医疗资源分配 本研究通过特征工程和深度学习模型,实现了对COVID-19患者的个性化诊断和治疗,提供了一种新的视角 NA 实现基于COVID-19患者临床检测指标数据的及时干预和优化医疗资源分配 COVID-19患者的临床检测指标数据 机器学习 COVID-19 深度学习 NA 临床数据 1799名个体,包括560名非呼吸道传染病对照组,681名其他呼吸道病毒感染对照组,558名COVID-19感染组 NA NA NA NA
250 2024-09-17
From Prototype to Inference: A Pipeline to Apply Deep Learning in Sorghum Panicle Detection
2023, Plant phenomics (Washington, D.C.)
研究论文 本文提出了一种从数据收集到模型部署的深度学习辅助高粱穗密度估算的全面流程 本文提供了一个通用的深度学习计数协议,并展示了其在高粱田中的应用,同时该流程可推广到其他谷物物种 本文主要在高粱田中展示了该流程,尚未在其他谷物物种中进行广泛验证 开发一种自动化的高粱穗密度估算方法,以替代传统的手动计数 高粱穗密度 计算机视觉 NA 深度学习 NA 图像 NA NA NA NA NA
251 2024-09-17
Automated tumor segmentation and brain tissue extraction from multiparametric MRI of pediatric brain tumors: A multi-institutional study
2023 Jan-Dec, Neuro-oncology advances IF:3.7Q2
研究论文 本文介绍了一种基于多参数MRI扫描的深度学习方法,用于自动提取和分割儿童脑肿瘤 提出了基于多参数MRI扫描的深度学习方法,用于自动提取和分割儿童脑肿瘤,减少了手动分割的时间和操作员间的差异 NA 开发一种自动化的方法来分割儿童脑肿瘤,以辅助手术和治疗计划 儿童脑肿瘤的多参数MRI扫描图像 计算机视觉 脑肿瘤 多参数MRI扫描 三维卷积神经网络 图像 244名儿童患者的多参数MRI扫描图像 NA NA NA NA
252 2024-09-17
Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review
2023, Frontiers in medicine IF:3.1Q1
综述 本文系统回顾了人工智能和机器学习模型在心血管重症监护病房中用于临床决策支持的研究 探讨了AI/ML在临床决策支持中的最新进展、陷阱和未来展望 75%的论文缺乏对外部数据集的验证,存在可推广性问题;AI决策的可解释性也是一个关键问题 研究AI/ML在心血管重症监护病房中用于临床决策支持的方法和工具 心血管重症监护病房中的患者监测 机器学习 心血管疾病 NA NA 时间序列数据和电子健康记录 NA NA NA NA NA
253 2024-09-17
A convolutional neural network for face mask detection in IoT-based smart healthcare systems
2023, Frontiers in physiology IF:3.2Q2
研究论文 本文提出了一种基于卷积神经网络的面部口罩检测方法,用于物联网智能医疗系统 本文创新性地结合了YOLOv3架构和计算机视觉技术,用于检测未佩戴口罩和未保持社交距离的行为 本文未详细讨论系统的实时性能和在不同光照条件下的表现 旨在提供一种有效工具,减少传染病的传播 面部口罩佩戴情况和社交距离 计算机视觉 NA YOLOv3 卷积神经网络 图像 使用了COCO数据集进行评估 NA NA NA NA
254 2024-09-17
Towards a Deep Learning Pain-Level Detection Deployment at UAE for Patient-Centric-Pain Management and Diagnosis Support: Framework and Performance Evaluation
2023, Procedia computer science
研究论文 本文提出了一种在阿联酋部署的深度学习疼痛水平检测框架,并评估了其性能 首次提出在阿联酋部署深度学习疼痛水平检测框架 未提及具体局限性 开发和评估一种自动识别患者疼痛水平的深度学习框架 患者疼痛水平 机器学习 NA 深度学习 NA NA NA NA NA NA NA
255 2024-09-17
A Multimodal Network Security Framework for Healthcare Based on Deep Learning
2023, Computational intelligence and neuroscience
研究论文 本文提出了一种基于深度学习的多模态网络安全框架,用于医疗领域的网络流量分类 该框架通过深度学习方法自动提取空间和序列特征,提高了网络流量分类的效率,并解决了传统方法依赖人工特征提取和单一模型特征的问题 本文未详细讨论框架在实际应用中的可扩展性和处理大规模数据时的性能 解决现有网络流量分类方法中依赖人工特征提取和单一模型特征的问题,提高分类效率和稳定性 网络流量分类 机器学习 NA 深度学习 多模态网络 网络流量 NA NA NA NA NA
256 2024-09-16
Detection and classification of lung diseases for pneumonia and Covid-19 using machine and deep learning techniques
2023, Journal of ambient intelligence and humanized computing
研究论文 本文提出了一种用于从胸部X光图像中检测和分类肺炎和Covid-19的新框架 提出了一个包含数据集获取、图像质量增强、自适应和准确的感兴趣区域(ROI)估计、特征提取和疾病预测的框架,并设计了一种改进的区域生长技术用于ROI提取 未提及具体限制 开发一种准确检测和分类肺炎和Covid-19的方法 肺炎和Covid-19的胸部X光图像 计算机视觉 肺部疾病 机器学习和深度学习技术 人工神经网络(ANN)、支持向量机(SVM)、K近邻(KNN)、集成分类器、深度学习分类器、循环神经网络(RNN)与长短期记忆(LSTM) 图像 使用了两个公开的胸部X光图像数据集 NA NA NA NA
257 2024-09-16
LSTM Network Integrated with Particle Filter for Predicting the Bus Passenger Traffic
2023, Journal of signal processing systems
研究论文 本文结合深度学习和贝叶斯滤波技术,提出了一种集成粒子滤波与LSTM网络的模型,用于有效预测公交乘客流量 本文创新地将粒子滤波与LSTM网络结合,以提取马尔可夫行为并实现时间序列预测 实验结果表明,尽管模型在小训练数据集下表现良好,但其性能可能受限于数据集的大小 研究目的是开发一种能够准确预测公交乘客流量的模型,以优化公交调度 研究对象是公交乘客流量及其时间序列特征 机器学习 NA LSTM网络,粒子滤波 LSTM 时间序列数据 用于预测未来三十天乘客流量的数据 NA NA NA NA
258 2024-09-16
Epoch and accuracy based empirical study for cardiac MRI segmentation using deep learning technique
2023, PeerJ IF:2.3Q2
研究论文 本文研究了基于深度学习技术的心脏MRI分割任务中,训练轮数(epoch)与准确率之间的关系 本文建立了超参数训练轮数与准确率之间的关系,并优化了卷积神经网络模型以提高分割准确率 NA 研究心脏MRI图像分割任务中,训练轮数对模型准确率的影响 心脏MRI图像的分割 计算机视觉 心血管疾病 深度学习技术 卷积神经网络(CNN) 图像 NA NA NA NA NA
259 2024-09-16
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
2023, Frontiers in physiology IF:3.2Q2
研究论文 研究探讨了深度学习在预测房颤消融治疗成功率中的可解释性,并评估了左心房中是否使用了致心律失常区域 首次探索了深度学习模型在预测房颤消融治疗成功率中的可解释性,并验证了模型是否利用了MRI图像中的结构特征来识别致心律失常区域 研究仅使用了MRI衍生的2D左心房组织模型,未来需要进一步验证在真实临床环境中的应用 提高房颤消融治疗的成功率,并确保深度学习模型的预测结果具有临床可解释性 房颤及其消融治疗的成功率预测 机器学习 心血管疾病 深度学习 深度学习模型 图像 187个MRI衍生的2D左心房组织模型 NA NA NA NA
260 2024-09-16
Novel methods for elucidating modality importance in multimodal electrophysiology classifiers
2023, Frontiers in neuroinformatics IF:2.5Q3
研究论文 本文研究了多模态电生理分类器中模态重要性的新方法 提出了两种新的局部多模态可解释性方法,并首次将这些方法应用于电生理分析 NA 提高多模态电生理分类器的可解释性,促进个性化医疗的发展 自动睡眠阶段分类中的脑电图、眼电图和肌电图数据 机器学习 NA NA 卷积神经网络 时间序列数据 NA NA NA NA NA
回到顶部