深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202301] [清除筛选条件]
当前共找到 401 篇文献,本页显示第 81 - 100 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
81 2025-10-07
Novel breath biomarkers identification for early detection of hepatocellular carcinoma and cirrhosis using ML tools and GCMS
2023, PloS one IF:2.9Q1
研究论文 本研究通过GCMS技术和机器学习方法识别用于早期检测肝细胞癌和肝硬化的呼吸生物标志物 开发了基于R语言的机器学习模型,能够自动从原始数据中发现挥发性有机化合物,无需人工干预 GC-MS分析耗时且容易出错,需要专家操作;样本量较小(共100个样本) 开发早期检测肝细胞癌和肝硬化的精确诊断模型 肝细胞癌患者、肝硬化患者和健康对照者的呼吸样本 机器学习 肝细胞癌,肝硬化 GCMS, SPME, 气相色谱-质谱联用 深度学习 质谱数据 肝细胞癌35例,肝硬化35例,对照30例,共100个呼吸样本 R NA 灵敏度,特异性,准确率,AUC NA
82 2025-10-07
Digital staining facilitates biomedical microscopy
2023, Frontiers in bioinformatics IF:2.8Q2
综述 本文探讨了深度学习在生物医学显微镜中实现数字染色技术的方法与应用 将虚拟染色技术与神经网络结合,可校正显微镜像差并突破衍射极限分辨率 NA 改进生物医学显微镜的样本制备和成像流程 生物样本的显微镜成像 数字病理 NA 显微镜成像 深度学习 显微镜图像 NA NA 神经网络 NA NA
83 2025-10-07
Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm
2023, Soft computing IF:3.1Q2
研究论文 本研究使用深度学习算法基于X射线和CT图像对COVID-19患者进行早期诊断 采用改进的VGG-19、Inception_V2和决策树模型进行肺炎二分类,在COVID-19早期诊断中实现高准确率 数据集规模较小(仅360张图像),模型性能在不同架构间存在较大差异 开发基于医学影像的COVID-19早期诊断方法 COVID-19患者和肺炎患者的X射线及CT图像 计算机视觉 COVID-19 X射线成像,计算机断层扫描 CNN,决策树 图像 360张X射线和CT图像 NA VGG-19,Inception_V2,决策树 准确率 NA
84 2025-10-07
COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images
2023, Soft computing IF:3.1Q2
研究论文 开发了一种混合深度学习框架COVID-CheXNet,用于在胸部X光图像中识别COVID-19病毒 提出了一种结合ResNet34和高分辨率网络模型的并行架构,采用加权求和规则在分数级融合两个预训练模型的结果 NA 快速准确诊断COVID-19感染,减轻放射科医生压力并控制疫情传播 胸部X光图像中的COVID-19病毒识别 计算机视觉 COVID-19 胸部X光成像 深度学习 图像 NA NA ResNet34,高分辨率网络 准确率,灵敏度,特异性,精确率,F1分数,均方误差,均方根误差 NA
85 2025-10-07
Performance evaluation of deep learning techniques for lung cancer prediction
2023, Soft computing IF:3.1Q2
研究论文 评估多种深度学习技术在肺癌预测中的性能表现 系统比较不同深度学习模型在肺癌预测任务中的表现,确定最优技术方案 NA 识别用于肺部疾病预测的最佳深度学习技术 肺部疾病患者 计算机视觉 肺癌 胸部X光成像, CT扫描 深度学习 图像 NA NA NA 精确率, 召回率, 准确率, Jaccard指数 NA
86 2025-10-07
Handling high-dimensional data with missing values by modern machine learning techniques
2023, Journal of applied statistics IF:1.2Q2
研究论文 本文讨论使用现代机器学习技术处理高维缺失数据的方法 比较了惩罚回归、树基方法和深度学习在处理高维缺失数据方面的性能,发现深度学习和XGBoost方法在偏差与方差平衡方面具有优势 仅通过有限的模拟研究和单一实际应用进行比较验证 开发处理高维缺失数据的现代机器学习方法 高维数据中的缺失值处理 机器学习 NA 缺失数据处理技术 深度学习,XGBoost,惩罚回归模型,树基模型 高维数据 NA NA NA 偏差,方差 NA
87 2025-10-07
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham
2023, PloS one IF:2.9Q1
研究论文 提出新型深度学习架构MUCRAN,用于在回归混杂因素的同时训练脑部MRI疾病检测模型 开发了多混杂因素回归对抗网络(MUCRAN),可同时回归人口统计学和技术混杂因素,并集成不确定性量化方法自动排除分布外数据 仅使用单一医疗机构2019年前的数据进行训练,未包含更广泛时间跨度和多中心数据 开发能够处理临床异质性MRI数据的阿尔茨海默病检测方法 临床脑部MRI图像 医学影像分析 阿尔茨海默病 MRI 对抗网络,集成学习 医学图像 17,076例临床T1轴向脑部MRI NA MUCRAN 准确率 NA
88 2025-01-05
Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network
2023, IEEE access : practical innovations, open solutions IF:3.4Q2
研究论文 本文提出了一种结合运动校正和图辅助3D神经网络的视网膜OCT层分割方法,以提高分割精度 提出了结合运动校正和分割的3D神经网络,并引入了一种新颖的图金字塔结构 NA 提高视网膜OCT层分割的精度,以更好地诊断和评估视网膜及全身性疾病 视网膜OCT图像 计算机视觉 视网膜疾病 OCT成像技术 3D卷积神经网络 3D图像 包含正常样本和多种疾病样本的大型OCT分割数据集 NA NA NA NA
89 2025-01-04
ViTab Transformer Framework for Predicting Induced Electric Field and Focality in Transcranial Magnetic Stimulation
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究开发了一种基于深度学习的ViTab Transformer模型,用于预测经颅磁刺激中的感应电场和聚焦性,以替代耗时的电磁模拟软件 提出了ViTab Transformer模型,通过考虑多个输入参数(如MRI图像源、线圈类型、线圈位置、电流变化率、脑组织导电性和线圈与头皮的距离)来预测电场最大值、刺激面积和刺激体积,克服了现有模型仅考虑少数输入参数的局限性 未提及具体局限性 开发一种深度学习模型,以提高经颅磁刺激在神经系统疾病治疗中的效果和寻找新的临床应用 经颅磁刺激中的感应电场和聚焦性 机器学习 神经系统疾病 深度学习 Transformer 图像和表格数据 未提及具体样本数量 NA NA NA NA
90 2025-01-04
A Probability Fusion Approach for Foot Placement Prediction in Complex Terrains
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种概率融合方法,用于预测复杂地形中的足部放置,以更好地辅助下肢残疾人士的日常行走 该方法结合了深度学习模型和环境信息,能够在复杂地形中预测下一步的足部放置,相比现有研究在复杂地形中实现了更快和更准确的预测 实验主要针对结构化地形和复杂地形,未涉及更多样化的地形或更广泛的用户群体 研究目的是开发一种能够在复杂地形中预测足部放置的方法,以辅助下肢残疾人士的行走 研究对象为下肢残疾人士在复杂地形中的足部放置 机器学习 下肢残疾 深度学习 深度学习模型 增强数据 实验包括结构化地形实验和复杂地形实验 NA NA NA NA
91 2025-01-04
Depression Identification Using EEG Signals via a Hybrid of LSTM and Spiking Neural Networks
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种结合LSTM和脉冲神经网络(SNN)的新框架,用于通过EEG信号有效分类个体抑郁水平 首次将SNN架构与LSTM结构结合,模拟抑郁不同阶段的大脑基础结构,并利用原始EEG信号进行分类 NA 通过EEG信号定量评估抑郁严重程度,并分类个体抑郁水平 抑郁患者的EEG信号 机器学习 抑郁症 EEG信号分析 LSTM, SNN EEG信号 NA NA NA NA NA
92 2025-01-04
Graph Reasoning Module for Alzheimer's Disease Diagnosis: A Plug-and-Play Method
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种图推理模块(GRM),用于增强基于卷积神经网络(CNN)的阿尔茨海默病(AD)检测模型,通过模拟不同脑区之间的潜在关系来提高诊断性能 提出了一种可即插即用的图推理模块(GRM),结合自适应图Transformer(AGT)块、图卷积网络(GCN)块和特征图重建(FMR)块,有效解决了CNN方法在关联空间远距离信息上的不足 未提及具体局限性 提高阿尔茨海默病(AD)的诊断性能 阿尔茨海默病(AD)患者的结构磁共振成像(sMRI)数据 计算机视觉 老年病 结构磁共振成像(sMRI) CNN, 自适应图Transformer(AGT), 图卷积网络(GCN) 图像 未提及具体样本数量 NA NA NA NA
93 2025-01-04
LSTM-MSA: A Novel Deep Learning Model With Dual-Stage Attention Mechanisms Forearm EMG-Based Hand Gesture Recognition
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文介绍了一种结合长短期记忆网络和双阶段注意力机制的LSTM-MSA模型,用于分析肌电图(EMG)信号,以提高手势识别的准确性和鲁棒性 LSTM-MSA模型结合了LSTM层和注意力机制,能够有效捕捉相关信号特征并准确预测意图动作,具有双阶段注意力、端到端特征提取与分类集成以及个性化训练等显著特点 NA 提高EMG信号在手势识别中的准确性和鲁棒性,应用于假肢控制、康复和人机交互等领域 肌电图(EMG)信号 机器学习 NA NA LSTM 信号 多个数据集 NA NA NA NA
94 2025-01-04
Mixture of Experts for EEG-Based Seizure Subtype Classification
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了两种新颖的专家混合模型(MoE),Seizure-MoE和Mix-MoE,用于基于EEG的癫痫亚型分类 Mix-MoE模型通过引入不平衡采样器和整合手动EEG特征的先验知识,解决了类别不平衡和缺乏先验知识的问题 需要大量标记的EEG样本来训练模型,且模型在其他EEG分类问题上的扩展性尚未完全验证 提高基于EEG的癫痫亚型分类的准确性和效率 癫痫患者的EEG数据 机器学习 癫痫 EEG Mixture of Experts (MoE), Seizure-MoE, Mix-MoE EEG信号 两个公共数据集 NA NA NA NA
95 2025-01-04
Accurate COP Trajectory Estimation in Healthy and Pathological Gait Using Multimodal Instrumented Insoles and Deep Learning Models
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究介绍了一种新型深度循环神经网络,通过融合来自经济型异质鞋垫嵌入式传感器的数据,准确估计动态COP轨迹 使用深度循环神经网络融合低成本传感器数据,实现在实验室外环境中准确估计COP轨迹 需要进一步验证在不同病理条件下的广泛适用性 开发一种在实验室外环境中准确测量COP轨迹的方法,以评估步态和平衡功能的变化 健康个体和神经肌肉疾病患者 机器学习 神经肌肉疾病 深度循环神经网络 RNN 传感器数据(FSR和IMU) 健康个体和神经肌肉疾病患者 NA NA NA NA
96 2025-01-04
Deep Unsupervised Representation Learning for Feature-Informed EEG Domain Extraction
2023, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本文提出了一种新的推理模型——联合嵌入变分自编码器,用于改进脑电图(EEG)分类中的特征提取和模型优化 提出了一种新的联合嵌入变分自编码器模型,通过联合优化的变分自编码器实现条件更紧密的时空特征分布估计,从而在不牺牲模型紧密性的情况下提高整体模型优化和扩展 模型依赖于EEG信号的复杂特征提取,这些特征的检测和定义本身具有挑战性 改进脑电图(EEG)分类中的特征提取和模型优化,特别是在目标受试者数据难以获取的情况下 脑电图(EEG)信号 机器学习 NA 变分自编码器 联合嵌入变分自编码器 脑电图(EEG)信号 未明确提及具体样本数量 NA NA NA NA
97 2024-12-24
Deep learning based registration of serial whole-slide histopathology images in different stains
2023, Journal of pathology informatics
研究论文 本文提出了一种基于深度学习的注册网络CGNReg,用于在不同染色下对连续的全切片病理图像进行空间对齐 本文提出了一种新的基于深度学习的注册网络CGNReg,能够在没有先验变形信息的情况下,对H&E和IHC标记的连续全切片图像进行空间对齐 本文的局限性在于仅在乳腺癌患者的数据集上进行了评估,未来需要在更多类型的病理图像上进行验证 研究目的是对多染色病理全切片图像块的连续切片进行注册 研究对象是H&E和IHC标记的连续全切片病理图像 数字病理学 乳腺癌 深度学习 全卷积网络 图像 76名乳腺癌患者,每位患者有1张H&E和2张IHC连续全切片图像 NA NA NA NA
98 2024-12-24
Pan-tumor T-lymphocyte detection using deep neural networks: Recommendations for transfer learning in immunohistochemistry
2023, Journal of pathology informatics
研究论文 本文研究了使用深度神经网络进行泛肿瘤T淋巴细胞检测,并提出了在免疫组化中进行迁移学习的建议 本文采用了RetinaNet架构进行T淋巴细胞检测,并通过迁移学习减少了不同肿瘤类型之间的领域差距,提高了算法的鲁棒性 本文的实验主要在特定数据集上进行,未涵盖所有可能的病理实验室或样本类型 研究如何通过计算机辅助系统高效量化肿瘤中的免疫细胞,并提高免疫细胞评分算法的鲁棒性和可重复性 泛肿瘤中的T淋巴细胞 计算机视觉 NA 深度学习 RetinaNet 图像 具体样本数量未在摘要中提及 NA NA NA NA
99 2024-12-14
Federated Learning in Risk Prediction: A Primer and Application to COVID-19-Associated Acute Kidney Injury
2023, Nephron IF:2.3Q2
研究论文 本文介绍了联邦学习在风险预测中的应用,特别是针对COVID-19相关急性肾损伤的情况 联邦学习提供了一种替代单机构方法的功能性选择,同时避免了数据共享的陷阱 NA 展示联邦学习在COVID-19相关急性肾损伤风险预测中的应用 COVID-19相关急性肾损伤的风险预测 机器学习 急性肾损伤 联邦学习 NA 数据 NA NA NA NA NA
100 2024-12-14
Application of Artificial Intelligence to the Monitoring of Medication Adherence for Tuberculosis Treatment in Africa: Algorithm Development and Validation
2023 Jan-Dec, JMIR AI
研究论文 本文开发并验证了一种基于深度学习模型的算法,用于在非洲通过视频监控结核病治疗中的药物依从性 本文首次在临床环境中评估了人工智能在药物依从性监测中的应用,并展示了其在资源有限的环境中的潜力 由于缺乏公开的特定药物摄入视频帧数据集,本文未进行外部验证 开发一种深度学习模型,用于简单二分类和确认结核病治疗中的药物依从性,以提高视频监控患者的效率 成年结核病患者在乌干达进行的视频观察疗法研究中的药物摄入视频图像 计算机视觉 结核病 深度学习 卷积神经网络 视频 861个视频图像,其中497个用于训练模型,405个为正样本,92个为负样本 NA NA NA NA
回到顶部