本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121 | 2024-09-23 |
Understanding structure-guided variant effect predictions using 3D convolutional neural networks
2023, Frontiers in molecular biosciences
IF:3.9Q2
DOI:10.3389/fmolb.2023.1204157
PMID:37475887
|
研究论文 | 本文介绍了一种名为DeepRank-Mut的可配置框架,用于从3D空间中提取和学习氨基酸周围突变的物理化学相关特征,并通过3D卷积神经网络预测突变的有害性 | 提出了DeepRank-Mut框架,结合3D卷积神经网络和多通道3D体素网格,从结构环境中提取特征,以提高突变有害性预测的准确性 | 研究结果显示模型性能与其他常用资源相当,但未提及具体的改进空间或未来研究方向 | 开发和评估一种新的方法,用于预测蛋白质结构引导下的突变有害性 | 氨基酸突变及其在3D空间中的物理化学特征 | 机器学习 | NA | 3D卷积神经网络 | 3D-CNN | 3D体素网格 | 独立测试数据集上的10折交叉验证实验 |
122 | 2024-09-23 |
Structural modeling of antibody variable regions using deep learning-progress and perspectives on drug discovery
2023, Frontiers in molecular biosciences
IF:3.9Q2
DOI:10.3389/fmolb.2023.1214424
PMID:37484529
|
综述 | 本文综述了使用深度学习进行抗体可变区结构建模的最新进展及其在药物发现中的应用 | 介绍了AlphaFold2在蛋白质结构预测方面的突破性进展,并探讨了其在抗体结构预测中的具体应用 | NA | 探讨深度学习在抗体结构预测中的应用及其对生物药物发现的影响 | 抗体结构预测及其在药物发现中的应用 | 机器学习 | NA | 深度学习 | AlphaFold2 | 蛋白质结构数据 | NA |
123 | 2024-09-23 |
Translating theory into practice: assessing the privacy implications of concept-based explanations for biomedical AI
2023, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2023.1194993
PMID:37484865
|
研究论文 | 本文探讨了基于概念的解释对生物医学AI模型隐私的影响 | 首次研究并比较了基于概念的解释对生物医学图像分析中深度学习AI模型隐私的影响 | 研究发现,在更现实的攻击场景中,解释带来的威胁在实践中可以忽略不计 | 评估基于概念的解释对生物医学AI模型隐私的影响 | 基于概念的解释对深度学习AI模型隐私的影响 | 机器学习 | NA | 深度学习 | ResNet50, NFNet, ConvNeXt | 图像 | 三个数据集:ISIC, EyePACS, SCDB |
124 | 2024-09-23 |
Generalizing factors of COVID-19 vaccine attitudes in different regions: A summary generation and topic modeling approach
2023 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076231188852
PMID:37485330
|
研究论文 | 本研究使用摘要生成和主题建模方法,识别不同地区对三种疫苗品牌态度的影响因素 | 采用BERTopic聚类和对比学习生成摘要,识别疫苗态度影响因素 | NA | 识别并概括不同地区对三种疫苗品牌态度的影响因素 | 三种疫苗品牌(Sinovac、AstraZeneca和Pfizer)的推文 | 自然语言处理 | NA | BERTopic聚类和对比学习 | BERTopic | 文本 | 5562条推文 |
125 | 2024-09-23 |
Mouse brain MR super-resolution using a deep learning network trained with optical imaging data
2023, Frontiers in radiology
DOI:10.3389/fradi.2023.1155866
PMID:37492378
|
研究论文 | 本文研究了使用深度学习网络对小鼠脑部MRI数据进行超分辨率处理的方法 | 首次使用高分辨率的小鼠脑部自体荧光数据训练深度学习网络,并通过迁移学习将其应用于MRI数据的超分辨率处理 | 研究主要集中在小鼠脑部,且需要高分辨率的自体荧光数据进行训练 | 提高MRI数据的分辨率和诊断价值 | 小鼠脑部MRI数据 | 计算机视觉 | NA | 深度学习 | 深度学习网络 | 图像 | 有限的高分辨率小鼠脑部MRI数据 |
126 | 2024-09-23 |
YOLO-plum: A high precision and real-time improved algorithm for plum recognition
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0287778
PMID:37498811
|
研究论文 | 本文提出了一种改进的YOLOv5算法用于李子识别,提高了识别精度和速度 | 首次建立了李子的人工数据集,并通过深度学习改进了目标检测算法,提高了未成熟李子的批量识别准确率和速度 | 目前仅在未成熟李子上进行了验证,未来可能需要扩展到其他未成熟水果 | 提高水果生长状态的实时、快速、准确和无损批量检测,以提升经济效益 | 未成熟李子的识别 | 计算机视觉 | NA | 深度学习 | YOLOv5 | 图像 | 首次建立了李子的人工数据集 |
127 | 2024-09-23 |
Geometric deep learning as a potential tool for antimicrobial peptide prediction
2023, Frontiers in bioinformatics
IF:2.8Q2
DOI:10.3389/fbinf.2023.1216362
PMID:37521317
|
综述 | 本文综述了利用几何深度学习技术设计和预测抗菌肽的最新进展 | 本文介绍了几何深度学习在处理非欧几里得空间数据中的应用,特别是在抗菌肽预测中的潜力 | 本文主要讨论了当前研究的局限性和未来方向,未提供具体的研究数据或实验结果 | 探讨几何深度学习在抗菌肽预测中的应用潜力 | 抗菌肽及其在非欧几里得空间中的结构数据 | 机器学习 | NA | 几何深度学习 | 深度神经网络 | 非欧几里得空间数据 | NA |
128 | 2024-09-23 |
Retracted: Evaluation and Stratification for Chinese International Education Quality with Deep Learning Model
2023, Computational and mathematical methods in medicine
DOI:10.1155/2023/9840651
PMID:37538452
|
correction | 该文章已被撤回 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
129 | 2024-09-23 |
Research Hotspots and Trends of Deep Learning in Critical Care Medicine: A Bibliometric and Visualized Study
2023, Journal of multidisciplinary healthcare
IF:2.7Q2
DOI:10.2147/JMDH.S420709
PMID:37539364
|
研究论文 | 本研究通过文献计量学方法分析了深度学习在重症监护医学中的研究热点和趋势 | 首次系统评估了全球范围内深度学习在重症监护医学中的研究热点和趋势 | 研究主要基于文献计量学分析,缺乏实际临床应用的验证 | 系统评估深度学习在重症监护医学中的研究热点和趋势 | 全球范围内深度学习在重症监护医学中的应用研究 | 机器学习 | 重症监护医学 | 深度学习技术 | CNN, LSTM, RNN, Transformer, 注意力机制 | 文献 | 1708篇文献 |
130 | 2024-09-23 |
Accelerated MRI using intelligent protocolling and subject-specific denoising applied to Alzheimer's disease imaging
2023, Frontiers in neuroimaging
DOI:10.3389/fnimg.2023.1072759
PMID:37554641
|
研究论文 | 本文通过智能协议和个体特异性去噪技术加速MRI成像,应用于阿尔茨海默病的诊断 | 利用深度学习进行对比特异性图像去噪,提高加速协议下采集数据的图像质量,并展示了个体特异性图像去噪的效果 | NA | 加速MRI成像并提高图像质量,以应用于阿尔茨海默病的诊断 | MRI成像协议的优化和图像去噪技术 | 计算机视觉 | 阿尔茨海默病 | 深度学习 | 深度学习模型 | 图像 | 25个回顾性数据集 |
131 | 2024-09-21 |
Exploiting multi-granularity visual features for retinal layer segmentation in human eyes
2023, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2023.1191803
PMID:37324431
|
研究论文 | 本文提出了一种基于ConvNeXt的端到端视网膜层分割网络,利用多粒度视觉特征进行精确分割 | 引入了新的深度高效注意力模块和多尺度结构,保留更多特征图细节 | NA | 提高视网膜层边界分割的准确性,辅助早期眼科疾病的检测 | 人眼视网膜层的分割 | 计算机视觉 | NA | ConvNeXt | ConvNeXt | 图像 | 206张健康人眼视网膜图像(NR206数据集) |
132 | 2024-09-21 |
Detection of brain regions responsible for chronic pain in osteoarthritis: an fMRI-based neuroimaging study using deep learning
2023, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2023.1195923
PMID:37333009
|
研究论文 | 本文利用深度学习算法分析fMRI数据,检测骨关节炎慢性疼痛相关的脑区 | 首次使用深度学习算法识别骨关节炎慢性疼痛相关的脑区,并发现了先前文献中未提及的几个脑区 | 样本量较小,仅包括51名疼痛患者和20名健康对照 | 探索深度学习算法在识别骨关节炎慢性疼痛相关脑区的应用 | 骨关节炎慢性疼痛患者和健康对照的脑区 | 计算机视觉 | 骨关节炎 | fMRI | CNN | 图像 | 51名疼痛患者和20名健康对照 |
133 | 2024-09-21 |
A multi-class classification algorithm based on hematoxylin-eosin staining for neoadjuvant therapy in rectal cancer: a retrospective study
2023, PeerJ
IF:2.3Q2
DOI:10.7717/peerj.15408
PMID:37334122
|
研究论文 | 本文开发了一种基于苏木精-伊红染色图像的多分类算法,用于预测直肠癌新辅助治疗的反应 | 首次开发了一种多分类器,能够预测直肠癌新辅助治疗的不同反应 | 仅限于使用苏木精-伊红染色图像进行分类 | 开发一种多分类算法,用于预测直肠癌新辅助治疗的反应 | 直肠癌新辅助治疗的病理反应 | 数字病理学 | 直肠癌 | NA | 残差神经网络 (ResNet) | 图像 | NA |
134 | 2024-09-21 |
A novel framework based on deep learning for COVID-19 diagnosis from X-ray images
2023, PeerJ. Computer science
DOI:10.7717/peerj-cs.1375
PMID:37346600
|
研究论文 | 本文提出了一种基于深度学习的COVID-19诊断框架,使用X射线图像进行检测 | 本文提出了一种新的深度学习框架,使用改进的DenseNet-121模型进行COVID-19诊断 | 本文未详细讨论模型的泛化能力和在不同数据集上的表现 | 设计一种高精度的深度神经网络,用于在线识别医学图像 | COVID-19的X射线图像 | 计算机视觉 | COVID-19 | 深度学习 | DenseNet-121 | 图像 | 涉及不同类型的肺炎数据 |
135 | 2024-09-20 |
DynamicSleepNet: a multi-exit neural network with adaptive inference time for sleep stage classification
2023, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2023.1171467
PMID:37250117
|
研究论文 | 提出了一种名为DynamicSleepNet的多出口神经网络,用于动态调整睡眠阶段分类的精度和效率 | DynamicSleepNet通过多出口结构和动态推理时间调整,减少了多模态电生理信号处理中的冗余计算,提高了效率 | NA | 提高睡眠阶段分类的自动化程度和效率 | 睡眠阶段的分类 | 机器学习 | NA | 多模态电生理信号 | 多出口神经网络 | 电生理信号 | 四个数据集 |
136 | 2024-09-20 |
A Lightweight convolutional neural network for nicotine prediction in tobacco by near-infrared spectroscopy
2023, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2023.1138693
PMID:37251760
|
研究论文 | 本文提出了一种轻量级一维卷积神经网络(1D-CNN)用于通过近红外光谱预测烟草中的尼古丁含量 | 本文的创新点在于提出了一种轻量级的一维卷积神经网络模型,用于通过近红外光谱数据预测烟草中的尼古丁含量,并采用了批量归一化技术来减少过拟合并提高模型的泛化性能 | 本文的局限性在于仅使用了Savitzky-Golay平滑预处理方法,未探讨其他预处理方法对模型性能的影响 | 本研究的目的是开发一种高效、准确的模型,用于通过近红外光谱技术快速预测烟草中的尼古丁含量 | 本研究的对象是烟草中的尼古丁含量 | 机器学习 | NA | 近红外光谱 | 一维卷积神经网络(1D-CNN) | 光谱数据 | 随机生成的训练和测试数据集 |
137 | 2024-09-20 |
Enhancing Disease Classification in Abdominal CT Scans through RGB Superposition Methods and 2D Convolutional Neural Networks: A Study of Appendicitis and Diverticulitis
2023, Computational and mathematical methods in medicine
DOI:10.1155/2023/7714483
PMID:37284168
|
研究论文 | 本文提出了一种利用RGB叠加方法和2D卷积神经网络增强腹部CT扫描中疾病分类的方法,主要研究了阑尾炎和憩室炎的诊断 | 本文创新性地使用RGB通道叠加图像作为模型输入,相比传统的3D CNN方法,减少了数据需求和计算资源,提高了分类性能 | 本文未详细讨论模型在其他疾病或不同数据集上的泛化能力 | 提高腹部CT扫描中阑尾炎和憩室炎的分类准确性 | 阑尾炎和憩室炎 | 计算机视觉 | NA | 2D卷积神经网络 | EfficientNet | 图像 | 未明确提及具体样本数量 |
138 | 2024-09-20 |
Hematologic Cancer Detection Using White Blood Cancerous Cells Empowered with Transfer Learning and Image Processing
2023, Journal of healthcare engineering
DOI:10.1155/2023/1406545
PMID:37284488
|
研究论文 | 本文提出了一种利用迁移学习和图像处理技术增强的深度学习模型,用于检测血液癌症 | 本文的创新点在于结合了迁移学习和图像处理技术,提高了血液癌症检测的准确性 | 本文的局限性在于仅使用了AlexNet、MobileNet和ResNet模型,未探索其他可能更优的模型 | 本文的研究目的是提高血液癌症的早期预测和治疗效果 | 本文的研究对象是血液癌症中的淋巴瘤和白血病 | 计算机视觉 | 血液癌症 | 迁移学习、图像处理 | 深度学习模型(AlexNet、MobileNet、ResNet) | 图像 | 使用了大量的白血癌细胞图像进行训练和测试 |
139 | 2024-09-20 |
Do poverty and wealth look the same the world over? A comparative study of 12 cities from five high-income countries using street images
2023, EPJ data science
IF:3.0Q1
DOI:10.1140/epjds/s13688-023-00394-6
PMID:37293269
|
研究论文 | 本文通过分析来自五个高收入国家的12个城市的720万张街道图像,使用计算机视觉和深度学习方法,比较了不同城市中贫困和富裕社区的视觉相似性 | 本文首次在多个国家和城市之间进行街道图像的比较分析,揭示了贫困和富裕社区在视觉特征上的差异,并探讨了这些差异的历史、政策和地理因素 | 研究结果表明,基于图像的不平等测量方法在不同城市之间存在误差,尤其是在贫困地区,需要进一步改进以捕捉全球城市间的异质性 | 研究不同城市和国家中贫困和富裕社区的视觉相似性,并探讨这些差异的影响因素 | 来自五个高收入国家的12个城市的街道图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 720万张街道图像,来自12个城市的超过8500万人 |
140 | 2024-09-20 |
The current state of artificial intelligence in endoscopic diagnosis of early esophageal squamous cell carcinoma
2023, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2023.1198941
PMID:37293591
|
综述 | 本文综述了人工智能在早期食管鳞状细胞癌内镜诊断中的现状 | 人工智能通过深度学习模型中的卷积神经网络(CNN)提取图像数据的关键特征,并进行图像分类,显著提高了内镜图像分类的准确性 | 人工智能系统的训练数据集存在选择性偏差,影响其通用性 | 探讨人工智能在早期食管鳞状细胞癌内镜诊断和侵袭深度预测中的应用 | 早期食管鳞状细胞癌 | 计算机视觉 | 食管癌 | 深度学习 | 卷积神经网络(CNN) | 图像 | NA |