本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141 | 2024-09-30 |
Abnormal structural and functional network topological properties associated with left prefrontal, parietal, and occipital cortices significantly predict childhood TBI-related attention deficits: A semi-supervised deep learning study
2023, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2023.1128646
PMID:36937671
|
研究论文 | 研究使用半监督深度学习模型探讨儿童创伤性脑损伤(TBI)相关注意力缺陷的结构和功能网络拓扑变化 | 首次使用半监督自编码器深度学习模型分析TBI儿童的脑网络拓扑变化,并预测注意力缺陷 | 样本量相对较小,且仅限于儿童TBI患者 | 探讨TBI儿童脑网络的结构和功能拓扑变化,并预测注意力缺陷 | TBI儿童的脑网络结构和功能变化及其对注意力缺陷的预测能力 | 机器学习 | 创伤性脑损伤 | 功能磁共振成像(fMRI)和扩散张量成像(DTI) | 半监督自编码器 | 图像 | 110名受试者(55名TBI儿童和55名匹配的对照组) |
142 | 2024-09-30 |
An in-silico framework for modeling optimal control of neural systems
2023, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2023.1141884
PMID:36968496
|
研究论文 | 本文提出了一种可扩展的、数据驱动的统一方法,用于研究脑-机-环境交互,结合了动力系统、最优控制理论和深度学习的工具 | 本文的创新点在于将最优控制理论与深度学习相结合,提出了一种新的框架来模拟神经系统的最优控制 | 本文的局限性在于仅在模拟环境中进行了验证,尚未应用于实际的神经系统 | 本文的研究目的是设计适用于大规模复杂神经系统的控制律 | 本文的研究对象是脑-机接口和神经系统的最优控制 | 机器学习 | NA | 最优控制理论、深度学习 | 递归神经网络 | NA | NA |
143 | 2024-09-30 |
Non-stationary neural signal to image conversion framework for image-based deep learning algorithms
2023, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2023.1081160
PMID:37035716
|
研究论文 | 本文提出了一种时间高效的预处理框架,将任何给定的1D生理信号记录转换为2D图像表示,用于训练基于图像的深度学习模型 | 使用Bresenham's线算法将非平稳信号光栅化为2D图像,并使用修改后的2D卷积神经网络进行分类 | NA | 开发一种将1D生理信号转换为2D图像的方法,以便用于基于图像的深度学习模型 | 神经尖峰分类和EEG癫痫发作与非发作分类 | 机器学习 | NA | Bresenham's线算法 | 2D卷积神经网络 | 图像 | 两个公开数据集,包括多类神经记录和二类EEG癫痫发作与非发作记录 |
144 | 2024-09-30 |
Multi-head attention-based masked sequence model for mapping functional brain networks
2023, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2023.1183145
PMID:37214388
|
研究论文 | 本文提出了一种基于多头注意力机制的掩码序列模型,用于映射功能性脑网络 | 该模型通过多头注意力机制和掩码训练方法,学习不同状态下相同体素值的表示,并结合余弦相似度和任务设计曲线构建新的损失函数 | 现有方法在构建功能性脑网络时未考虑fMRI数据的内在特性,如同一信号值在不同时间点可能代表不同的脑状态和意义,且在训练过程中忽略了先验知识 | 克服现有方法的局限性,开发更高效的功能性脑网络映射模型 | 功能性脑网络的映射 | 计算机视觉 | NA | 功能磁共振成像(tfMRI) | 多头注意力机制 | 图像 | 七种任务状态数据集 |
145 | 2024-09-30 |
mEMbrain: an interactive deep learning MATLAB tool for connectomic segmentation on commodity desktops
2023, Frontiers in neural circuits
IF:3.4Q2
DOI:10.3389/fncir.2023.952921
PMID:37396399
|
研究论文 | 介绍了一个名为mEMbrain的交互式深度学习MATLAB工具,用于在普通台式机上进行连接组分割 | 提出了mEMbrain工具,集成了多种功能,包括地面实况生成、图像预处理、深度神经网络训练和实时预测,旨在加速手动标注工作并提供半自动实例分割方法 | 未提及 | 开发一个用户友好的开源工具,促进神经科学和图像处理领域的先进分析 | 电子显微镜数据集的标注和分割 | 计算机视觉 | NA | 深度学习 | 深度神经网络 | 图像 | 测试了多种数据集,包括不同物种、神经系统区域和发育阶段的数据集,提供了来自四种动物和五个数据集的地面实况标注,总计约180小时专家标注,生成超过1.2 GB的标注EM图像 |
146 | 2024-09-30 |
The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review
2023, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2023.1102185
PMID:37469694
|
综述 | 本文综述了人工智能在WHO各地区基本医疗服务中的应用现状 | 本文首次系统综述了人工智能在医疗保健中的广泛应用,涵盖了多种疾病类型 | 本文仅基于2022年3月之前的文献,可能未涵盖最新的研究进展 | 旨在总结现有证据,探讨人工智能在医疗保健中的应用 | 人工智能在医疗保健中的应用,包括疾病检测、诊断、分类、管理、治疗和预后监测 | 机器学习 | NA | 深度学习 | NA | NA | NA |
147 | 2024-09-30 |
Disentangling rodent behaviors to improve automated behavior recognition
2023, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2023.1198209
PMID:37496740
|
研究论文 | 本文探讨了自动化行为识别中啮齿动物行为识别准确率难以超过75-80%的原因,并区分了行为动态的三个难以自动化的方面 | 通过人工数据集隔离这些行为动态方面,并使用最先进的行为识别模型重现效果,为优化行为识别架构提供了可能性 | 依赖于人工数据集和现有模型的局限性 | 提高自动化行为识别的准确性,特别是啮齿动物行为的识别 | 啮齿动物的行为动态 | 计算机视觉 | NA | 深度学习 | 行为识别模型 | 人工数据集 | 大量标记训练数据 |
148 | 2024-09-29 |
Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment
2023-Jan-03, Sensors (Basel, Switzerland)
DOI:10.3390/s23010527
PMID:36617124
|
综述 | 本文综述了人工智能在COVID-19防控中的评估与发展 | 本文展示了人工智能算法与物联网穿戴设备的集成在COVID-19检测和预测中的有效性和效率 | NA | 研究人工智能在COVID-19大流行中的作用 | COVID-19的预测、检测和防控方法 | 机器学习 | COVID-19 | 机器学习、深度学习、图像处理、目标检测、图像分割、少样本学习 | NA | 图像、临床数据、声音、生物医学数据、社会人口数据 | NA |
149 | 2024-09-29 |
Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review
2023, SN computer science
DOI:10.1007/s42979-022-01464-8
PMID:36467853
|
综述 | 本文综述了使用放射影像学技术进行COVID-19筛查的机器学习和深度学习方法 | 介绍了多种AI/ML/DL算法用于计算机辅助检测COVID-19的创新点 | 讨论了已发表工作的优缺点和局限性 | 总结和比较用于COVID-19诊断预测的AI/ML/DL方法 | COVID-19的放射影像学筛查 | 机器学习 | 呼吸系统疾病 | 机器学习、深度学习 | 多种模型 | 影像 | 265篇文章 |
150 | 2024-09-29 |
COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled
2023, Archives of computational methods in engineering : state of the art reviews
IF:9.7Q1
DOI:10.1007/s11831-023-09882-4
PMID:36685135
|
研究论文 | 本文综述了机器学习、深度学习和人工智能在应对COVID-19疫情和诊断其严重影响中的应用 | 本文通过比较分析现有文献中的预测方法,突出了机器学习、深度学习和人工智能技术在应对COVID-19疫情中的重要性 | NA | 探讨机器学习、深度学习和人工智能在应对COVID-19疫情中的应用 | COVID-19疫情及其诊断方法 | 机器学习 | COVID-19 | 机器学习、深度学习、人工智能 | NA | NA | NA |
151 | 2024-09-28 |
Machine learning in metastatic cancer research: Potentials, possibilities, and prospects
2023, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2023.03.046
PMID:37077177
|
综述 | 本文综述了经典机器学习和深度学习在转移性癌症研究中的应用 | 本文指出了现有模型在临床试验数据中由于样本多样性不足可能导致泛化能力被高估的问题 | 深度学习模型的黑箱性质和高计算成本是其主要局限 | 探讨机器学习和深度学习在转移性癌症研究中的潜力和前景 | 转移性癌症的早期检测、生物标志物识别和治疗选择 | 机器学习 | 癌症 | 深度学习 | NA | 图像 | 临床试验数据中的样本多样性不足 |
152 | 2024-09-28 |
Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical Images: A Survey
2023, New generation computing
IF:2.0Q2
DOI:10.1007/s00354-023-00213-6
PMID:37229176
|
综述 | 本文综述了2020年1月至2022年9月期间使用深度学习模型进行COVID-19检测的研究 | 本文比较了不同深度学习方法在COVID-19检测中的应用,并提供了该领域的未来发展方向 | NA | 探讨深度学习在COVID-19检测中的应用 | COVID-19检测 | 计算机视觉 | COVID-19 | 深度学习 | CNN | 图像 | NA |
153 | 2024-09-28 |
On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks
2023, Archives of computational methods in engineering : state of the art reviews
IF:9.7Q1
DOI:10.1007/s11831-023-09899-9
PMID:37260910
|
综述 | 本文综述了卷积神经网络(CNN)在医学图像分析中的应用及其内部结构和挑战 | 本文介绍了深度学习中不同的激活函数、超参数优化、正则化、动量和损失函数对CNN性能的改进 | NA | 探讨CNN在医学图像分析中的应用及其内部结构和挑战 | 卷积神经网络及其在医学图像分析中的应用 | 计算机视觉 | NA | 卷积神经网络(CNN) | CNN | 图像 | NA |
154 | 2024-09-28 |
Multi-modal medical image classification using deep residual network and genetic algorithm
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0287786
PMID:37384779
|
研究论文 | 本文提出了一种基于深度残差网络和遗传算法的多模态医学图像分类方法 | 利用深度学习模型ResNet50结合遗传算法,提高了多模态医学图像分类的准确性 | NA | 旨在缩小语义鸿沟并提高多模态医学图像分类的性能 | 多模态医学图像 | 计算机视觉 | NA | 深度学习 | ResNet50 | 图像 | 28378张多模态医学图像 |
155 | 2024-09-28 |
Generic Interpretable Reaction Condition Predictions with Open Reaction Condition Datasets and Unsupervised Learning of Reaction Center
2023, Research (Washington, D.C.)
DOI:10.34133/research.0231
PMID:37849643
|
研究论文 | 本文提出了一个基于Transformer的反应条件预测模型Parrot,并创建了两个标准化的反应条件数据集 | 提出了一个强大的、可解释的Transformer模型Parrot,用于反应条件预测,并创建了两个标准化的反应条件数据集 | 训练数据集的多样性可能仍然有限 | 解决深度学习辅助合成规划中反应条件预测的挑战 | 反应条件预测模型和标准化数据集 | 机器学习 | NA | Transformer | Transformer | 文本 | 两个标准化的反应条件数据集,涵盖广泛的反应类别 |
156 | 2024-09-28 |
Deep learning-empowered crop breeding: intelligent, efficient and promising
2023, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2023.1260089
PMID:37860239
|
研究论文 | 本文探讨了深度学习在作物育种中的应用,旨在提高育种效率和作物品质 | 提出了基于深度学习的作物育种策略,以加速作物改良和提高育种效率 | 当前面临数据复杂性、数据获取困难和预测精度低等挑战 | 提高作物育种效率和作物品质 | 作物育种过程 | 机器学习 | NA | 深度学习 | NA | NA | NA |
157 | 2024-09-28 |
Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network
2023, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2023.1283404
PMID:37867600
|
研究论文 | 本文提出了一种基于全卷积神经网络的CircRNA-蛋白质结合位点预测方法 | 将CircRNA-蛋白质结合位点预测视为核苷酸级别的二分类任务,并使用全卷积神经网络进行预测 | 现有方法在准确预测具有特殊功能的motif位点方面表现不佳 | 研究CircRNA-蛋白质结合位点的预测及其在基因表达调控中的作用 | CircRNA-蛋白质结合位点及其motif功能 | 计算机视觉 | NA | 全卷积神经网络 | 全卷积神经网络 | 序列 | NA |
158 | 2024-09-28 |
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
2023, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2023.1232640
PMID:37876961
|
研究论文 | 本文介绍了一种用于胰腺CT图像分类的堆叠集成深度学习方法 | 提出了堆叠集成深度学习(SEDL)方法,结合Inception V3、VGG16和ResNet34作为弱学习器,并使用极端梯度提升(XGBoost)作为强学习器进行最终分类 | 未提及具体限制 | 提高胰腺CT图像分类的预测性能 | 胰腺CT医学图像 | 计算机视觉 | 胰腺癌 | 极端梯度提升(XGBoost) | 堆叠集成模型 | 图像 | 222张图像,来自80个胰腺CT扫描,分辨率为512*512像素,包括53名男性和27名女性 |
159 | 2024-09-28 |
Convolutional neural network model by deep learning and teaching robot in keyboard musical instrument teaching
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0293411
PMID:37883500
|
研究论文 | 研究通过深度学习和教学机器人在键盘乐器教学中的应用,提出了一种卷积神经网络模型,以改进学前教育的键盘乐器教学 | 提出了将智能技术与键盘乐器教学相结合的方法,通过教学机器人和深度学习模型实现个性化教学 | 未详细说明教学机器人的具体设计和实现细节,以及深度学习模型的训练数据和评估方法 | 探讨当前学前教育中键盘乐器教学的现状,提出改进方案,并验证教学机器人在键盘乐器教学中的应用效果 | 学前教育中的键盘乐器教学 | 机器学习 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 参与键盘乐器教学的学生 |
160 | 2024-09-28 |
Revealing the impact of psychiatric comorbidities on treatment outcome in early psychosis using counterfactual model explanation
2023, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2023.1237490
PMID:37900290
|
研究论文 | 研究利用多模态深度学习架构和反事实模型解释技术,探讨精神共病对早期精神病治疗结果的影响 | 引入反事实模型解释技术,分析MINI评分对缓解概率的影响,并识别出对缓解概率影响最大的特定共病 | 研究结果主要基于OPTiMiSE研究的多中心样本,可能存在样本偏倚 | 探讨精神共病对早期精神病治疗结果的影响,并改进个体化预测模型 | 早期精神病患者及其精神共病 | 机器学习 | 精神病 | 多模态深度学习 | 深度学习模型 | 文本 | 来自OPTiMiSE研究的多中心早期精神病患者样本 |