本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181 | 2025-03-19 |
Deep Learning Initialized Compressed Sensing (Deli-CS) in Volumetric Spatio-Temporal Subspace Reconstruction
2023-Mar-28, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.28.534431
PMID:37034586
|
研究论文 | 本文提出了一种名为Deli-CS的深度学习方法,用于加速时空MRI数据的重建,同时减少深度学习引起的幻觉风险 | 提出了Deli-CS框架,通过深度学习生成的起点来“启动”迭代重建,从而减少重建时间 | 需要大量训练数据,且在不强制数据一致性的情况下可能产生与采集数据不匹配的结果 | 减少时空MRI数据的重建时间,同时限制深度学习引起的幻觉风险 | 全脑多参数映射的时空MRI数据 | 医学影像处理 | NA | 深度学习,压缩感知 | 深度学习模型 | 时空MRI数据 | NA |
182 | 2025-03-18 |
An improved beluga whale optimizer-Derived Adaptive multi-channel DeepLabv3+ for semantic segmentation of aerial images
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0290624
PMID:37903154
|
研究论文 | 本文提出了一种改进的白鲸鲸优化算法驱动的自适应多通道DeepLabv3+模型,用于航空图像的语义分割 | 采用改进的白鲸鲸优化算法(IBWO)优化多通道DeepLabv3+的超参数,显著提高了分割精度和计算效率 | 未提及具体的数据集规模或多样性限制 | 提高航空图像语义分割的准确性和效率 | 航空图像 | 计算机视觉 | NA | 深度学习 | AMC-Deeplabv3+, IBWO | 图像 | 未提及具体样本数量 |
183 | 2025-03-15 |
Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning
2023-Dec-01, Journal of cancer research and therapeutics
IF:1.4Q4
DOI:10.4103/jcrt.jcrt_325_23
PMID:38156926
|
研究论文 | 本文评估了深度迁移学习(DTL)和微调方法在区分乳腺动态对比增强磁共振成像(DCE-MRI)中良恶性病变的能力 | 使用VGG19、ResNet50和DenseNet201模型进行对比,并通过微调策略提升模型性能,验证了VGG19模型在识别良恶性乳腺病变中的有效性 | 研究样本量有限,仅包含50个额外病变用于验证集,可能影响模型的泛化能力 | 评估深度迁移学习和微调方法在乳腺DCE-MRI中区分良恶性病变的能力 | 乳腺动态对比增强磁共振成像(DCE-MRI)中的良恶性病变 | 计算机视觉 | 乳腺癌 | 深度迁移学习(DTL)和微调方法 | VGG19, ResNet50, DenseNet201 | 图像 | 50个额外病变用于验证集 |
184 | 2025-03-15 |
Deep Learning-Based Diagnostic System for Velopharyngeal Insufficiency Based on Videofluoroscopy in Patients With Repaired Cleft Palates
2023 Nov-Dec 01, The Journal of craniofacial surgery
IF:1.0Q3
DOI:10.1097/SCS.0000000000009560
PMID:37815288
|
研究论文 | 本文开发了一种基于深度学习的诊断系统,用于评估修复腭裂患者的腭咽功能不全(VPI) | 首次将深度学习技术应用于VPI的诊断,并与人类专家的诊断结果进行比较 | 研究为回顾性分析,可能存在选择偏差 | 开发一种基于深度学习的诊断系统,用于评估修复腭裂患者的VPI | 修复腭裂患者 | 计算机视觉 | 腭咽功能不全 | 深度学习 | VGGNet, ResNet, Xception, ResNext, DenseNet, SENet | 视频 | 714例(2010年1月至2019年6月) |
185 | 2025-03-15 |
Using a New Deep Learning Method for 3D Cephalometry in Patients With Cleft Lip and Palate
2023 Jul-Aug 01, The Journal of craniofacial surgery
IF:1.0Q3
DOI:10.1097/SCS.0000000000009299
PMID:36944601
|
研究论文 | 本研究应用了一种基于3D点云图卷积神经网络的新深度学习方法,用于预测和定位唇腭裂患者的标志点 | 首次将深度学习方法应用于唇腭裂患者的3D头影测量标志点预测和定位 | 未来若扩大唇腭裂训练集,可能会获得更准确的结果 | 开发适用于唇腭裂患者的3D头影测量系统 | 唇腭裂患者 | 计算机视觉 | 唇腭裂 | 3D点云图卷积神经网络 | PointNet++ | 3D图像 | 150名患者 |
186 | 2025-03-14 |
Exploring the application of deep learning methods for polygenic risk score estimation
2023-Dec-15, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.12.14.23299972
PMID:38168416
|
研究论文 | 本文探讨了深度学习在估计多基因风险评分(PRS)中的应用 | 使用单一模型生成多个PRS,并探索了机器学习在PRS生成中的潜力,特别是在处理缺失数据时的表现 | 模型的进一步改进可能需要额外的输入数据 | 研究机器学习如何改进多基因风险评分的生成 | UK Biobank数据中的已知PRS | 机器学习 | NA | 深度学习 | MLP | 基因数据 | UK Biobank数据 |
187 | 2025-03-14 |
Deep learning on electronic medical records identifies distinct subphenotypes of diabetic kidney disease driven by genetic variations in the Rho pathway
2023-Sep-07, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.09.06.23295120
PMID:37732187
|
研究论文 | 本文利用深度学习技术分析电子病历数据,识别出与糖尿病肾病进展相关的新型遗传特征,并发现由Rho通路基因变异驱动的不同亚型 | 首次发现影响细胞骨架调节蛋白稳定性的疾病相关遗传变异,揭示了一种新的表达数量性状位点类别,具有潜在治疗靶点价值 | 研究样本量相对较小(1,372例),且仅针对糖尿病肾病患者,结果可能不适用于其他类型肾病 | 探索糖尿病肾病的遗传异质性,识别与疾病进展相关的遗传特征 | 1,372名糖尿病肾病患者 | 机器学习 | 糖尿病肾病 | 深度学习,外显子组关联分析 | 自编码器,无监督聚类 | 电子病历数据 | 1,372名糖尿病肾病患者 |
188 | 2024-08-07 |
Deep Learning on Electrocardiograms for Prediction of In-hospital Intradialytic Hypotension in Patients with ESKD
2023-09-01, Kidney360
IF:3.2Q1
DOI:10.34067/KID.0000000000000208
PMID:37418626
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
189 | 2025-03-14 |
Deep Learning for Automated Measurement of Patellofemoral Anatomic Landmarks
2023-Jul-08, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10070815
PMID:37508842
|
研究论文 | 本文应用深度学习技术自动测量膝关节解剖标志,以更好地理解解剖结构,从而改善治疗效果 | 首次开发了一个深度学习回归模型,用于自动标注髌股关节解剖标志,并在生理和病理CT影像上进行大规模训练 | 健康队列的沟角测量存在统计学显著差异 | 通过深度学习自动测量膝关节解剖标志,以改善对髌股关节解剖结构的理解 | 483名患者的膝关节CT影像,包括计划进行膝关节置换的患者和健康膝关节解剖的患者 | 计算机视觉 | 膝关节疾病 | 深度学习 | 修改后的ResNet50架构 | CT影像 | 483名患者的14,652张图像 |
190 | 2025-03-12 |
Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients
2023-05, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
IF:5.4Q1
DOI:10.1016/j.echo.2023.01.015
PMID:36754100
|
研究论文 | 本文介绍了EchoNet-Peds,一种基于视频的深度学习算法,用于自动评估儿科患者的左心室射血分数(EF) | EchoNet-Peds是首个专门针对儿科患者开发的深度学习算法,能够匹配人类专家在左心室分割和射血分数评估方面的表现 | 尽管EchoNet-Peds在儿科数据上表现优异,但其在成人数据上的适用性尚未验证 | 开发一种自动化工具,用于准确评估儿科患者的左心室射血分数和识别收缩功能障碍 | 儿科患者的超声心动图数据 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN | 视频 | 4,467个儿科超声心动图 |
191 | 2025-03-11 |
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-020218
PMID:37258226
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
192 | 2025-03-11 |
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-020804
PMID:37714539
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
193 | 2025-03-10 |
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
2023-Oct-17, ArXiv
PMID:37904746
|
研究论文 | 本文通过对称纤维化方法简化了细菌的基因调控网络,保留了信息流并突出了网络的计算能力 | 使用对称纤维化方法简化复杂的生物系统,揭示细菌基因调控网络的计算核心 | NA | 研究细菌基因调控网络的计算能力和信息传递机制 | 细菌的基因调控网络 | 生物信息学 | NA | 对称纤维化方法 | NA | 基因调控网络数据 | NA |
194 | 2025-03-10 |
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
2023-04, Digestive diseases and sciences
IF:2.5Q2
DOI:10.1007/s10620-022-07640-3
PMID:35909203
|
研究论文 | 本文评估并验证了基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 结合深度学习特征和临床预测因子建立了一个nomogram,显著提高了淋巴结转移预测的准确性 | 研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 | 评估和验证基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 胃癌患者 | 计算机视觉 | 胃癌 | 计算机断层扫描(CT) | ResNet50, 随机森林(RF) | 图像 | 347名患者(训练队列:242,测试队列:105) |
195 | 2025-03-09 |
MRI-Based Deep Learning Method for Classification of IDH Mutation Status
2023-Sep-05, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10091045
PMID:37760146
|
研究论文 | 本研究旨在开发基于T2加权MRI图像的深度学习网络,用于非侵入性IDH突变状态分类,并与多对比网络进行比较 | 开发了仅使用T2加权图像的深度学习网络(T2-net)和多对比网络(MC-net),并在超过1100个样本上进行了测试,这是迄今为止最大的基于图像的IDH分类研究 | NA | 开发用于IDH突变状态分类的深度学习算法 | 胶质瘤患者的MRI图像和基因组数据 | 计算机视觉 | 胶质瘤 | MRI | 深度学习网络(T2-net和MC-net) | 图像 | 超过1100个样本,包括来自多个数据库的病例 |
196 | 2025-03-05 |
Towards Automatic Cartilage Quantification in Clinical Trials - Continuing from the 2019 IWOAI Knee Segmentation Challenge
2023-Mar, Osteoarthritis imaging
DOI:10.1016/j.ostima.2023.100087
PMID:39036792
|
研究论文 | 本文评估了参与2019年IWOAI膝关节软骨分割挑战赛的六支团队的深度学习分割方法在纵向临床试验中量化软骨损失的适用性 | 研究展示了最先进的深度学习分割方法在标准化纵向单扫描仪临床试验中用于明确软骨分区的潜力 | 深度学习方法在股骨分区的标准化响应均值较低,可能是由于后处理中简单的子分区提取所致 | 评估深度学习分割方法在量化软骨损失中的适用性 | 来自骨关节炎倡议研究的556名受试者的1130个膝关节MRI扫描 | 数字病理学 | 骨关节炎 | 深度学习 | 深度学习分割方法 | MRI图像 | 556名受试者的1130个膝关节MRI扫描 |
197 | 2025-03-03 |
Few-shot learning using explainable Siamese twin network for the automated classification of blood cells
2023-Jun, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-023-02804-3
PMID:36800155
|
研究论文 | 本文提出了一种基于对比学习的Siamese twin network (STN)模型,用于从少量图像中训练并自动分类健康的外周血细胞 | 使用EfficientNet-B3作为基础模型,提出了一种新的类激活映射方案,以提高模型的可解释性 | 模型训练依赖于少量数据,可能影响其泛化能力 | 开发一种自动化且可解释的血液细胞分类方法 | 健康的外周血细胞 | 计算机视觉 | NA | 对比学习 | Siamese twin network (STN), EfficientNet-B3 | 图像 | 17,092张公开的细胞组织学图像,其中6%用于STN训练,6%用于少样本验证,88%用于少样本测试 |
198 | 2025-03-02 |
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
2023-12, Health services research
IF:3.1Q1
DOI:10.1111/1475-6773.14210
PMID:37534741
|
研究论文 | 开发了一种基于自然语言处理(NLP)的算法,用于从非结构化的电子健康记录(EHR)中识别阿尔茨海默病及相关痴呆(ADRD)患者的健康社会决定因素(SDoH) | 开发了一种基于规则的NLP算法,用于识别七个SDoH领域,并与深度学习和正则化逻辑回归方法进行了比较 | 在住房和药物不安全方面的SDoH识别性能较差 | 识别ADRD患者的健康社会决定因素(SDoH) | 阿尔茨海默病及相关痴呆(ADRD)患者 | 自然语言处理 | 老年病 | 自然语言处理(NLP) | 基于规则的NLP算法、深度学习、正则化逻辑回归 | 文本 | 1000份医疗记录,来自231名ADRD患者 |
199 | 2025-03-02 |
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28680
PMID:36939778
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
200 | 2025-03-02 |
Editorial for "Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor and Multi-disease Study"
2023-10, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28661
PMID:36847749
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |