深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 2292 篇文献,本页显示第 2021 - 2040 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
2021 2024-08-05
EASL: A Framework for Designing, Implementing, and Evaluating ML Solutions in Clinical Healthcare Settings
2023-Aug, Proceedings of machine learning research
PMID:38988337
研究论文 我们介绍了解释性分析系统实验室(EASL)框架,这是一种用于临床机器学习工具开发、实施和评估的端到端解决方案 EASL框架集成了模型开发、实施和评估的资源,为临床环境中的机器学习应用提供全面支持 NA 本研究旨在促进临床机器学习工具的开发与评估 设计和评估医学影像的深度学习分类器 机器学习 NA 深度学习 NA 医学影像 NA NA NA NA NA
2022 2024-08-05
Development of a portable device to quantify hepatic steatosis in potential donor livers
2023, Frontiers in transplantation
研究论文 本文描述了一种便携设备的开发,用于量化潜在供体肝脏中的肝脏脂肪沉积 创新点在于开发了一个低成本的人工智能平台,能够实时评估供体肝活检切片中的肝脂肪含量 该设备依赖于硬件配置,可能在不同设备间表现不一 研究目的在于提高肝脏移植中的脂肪含量评估准确性 研究对象是供体肝脏活检切片中的脂肪球体 数字病理学 NA 深度学习 NA 图像 NA NA NA NA NA
2023 2024-08-05
Application of multiple deep learning models for automatic burn wound assessment
2023-Aug, Burns : journal of the International Society for Burn Injuries IF:3.2Q1
研究论文 本文提出了一种基于多种深度学习模型的烧伤伤口自动评估系统 引入边界基础和区域基础标签方法及多个强大的深度学习模型进行烧伤面积评估 未提及具体的局限性 提高烧伤伤口的评估准确性,特别是总体表面积和深层烧伤区域的分割 涉及4991张早期烧伤图像和1050张手掌图像 计算机视觉 NA 深度学习 U-Net, PSPNet, DeeplabV3+, Mask R-CNN 图像 4991张早期烧伤图像和1050张手掌图像 NA NA NA NA
2024 2024-08-05
Human-in-the-Loop Optimization for Deep Stimulus Encoding in Visual Prostheses
2023-Dec, Advances in neural information processing systems
PMID:38984104
研究论文 本研究提出了一种结合深度学习和贝叶斯优化的新方法,用于视觉假体中的刺激编码优化。 提出了一种新的深度编码网络来为个体患者生成最佳刺激,并采用偏好贝叶斯优化策略进行个性化参数优化 尽管方法有效,但存在对高维刺激的处理能力不足的问题 旨在提高视觉假体患者的感知体验 研究视觉假体患者的个性化刺激编码 数字病理学 NA 深度学习,贝叶斯优化 深度编码网络 刺激参数数据 NA NA NA NA NA
2025 2024-08-05
Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms
2023-Nov-08, Research square
研究论文 该文章比较了预定义方法与深度学习方法在提取脑萎缩模式以预测阿尔茨海默病相关认知衰退中的表现 探讨了使用整个脑图像的深度学习模型是否能提高MRI预测性能 深度学习模型未显著改善阿尔茨海默病临床疾病进展的预测 预测具有主观认知衰退或轻度认知障碍的个体未来的阿尔茨海默病相关认知衰退 来自瑞典BioFINDER-1研究的332名主观认知衰退/轻度认知障碍个体 数字病理学 阿尔茨海默病 磁共振成像 (MRI) 深度学习模型 图像 332名患者 NA NA NA NA
2026 2024-08-05
HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery
2023-07-11, Immunity IF:25.5Q1
研究论文 本研究通过单等位基因免疫肽组学分析HLA-II结合体,结合深度学习,揭示抗原特征以辅助抗原发现 创新性地开发了基于深度学习的模型CAPTAn,用于预测与HLA-II亲和力相关的肽抗原 目前对影响抗原呈递的因素理解仍不完全,且在配体数据库中多样性等位基因的代表性不足 研究HLA-II抗原结合体的特征,以提供新的抗原发现工具 358,024个HLA-II结合肽,特别关注HLA-DQ和HLA-DP 数字病理学 NA 单等位基因免疫肽组学 深度学习模型(CAPTAn) PEPTIDES NA NA NA NA NA
2027 2024-08-05
In-silico generation of high-dimensional immune response data in patients using a deep neural network
2023-05, Cytometry. Part A : the journal of the International Society for Analytical Cytology
研究论文 本文提出了一种深度学习模型,用于在高维空间中生成患者的免疫反应数据 通过新的最佳时序细胞匹配和过完备自编码器管道,使用少量患者的数据预测整个患者的免疫反应 受限于仅使用小型患者样本,可能影响模型的普遍适用性 旨在理解免疫系统在各类疾病中的作用 分析手术前后1.08百万个细胞的数据 机器学习 NA 深度学习 自编码器 细胞数据 涉及1.08百万个细胞 NA NA NA NA
2028 2024-08-05
A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction
2023-12, Genomics, proteomics & bioinformatics
综述 该综述组织了与磷酸化位点预测相关的知识,以促进该领域的未来研究 综述了磷酸化位点(p-site)预测的算法和机器学习方法,并提出重要的特征提取技术 在线p-site预测工具在未见过的蛋白质上的实际性能显著低于相关研究论文中报告的结果 整理和总结与磷酸化位点预测相关的知识 涉及磷酸化修饰及其在生物过程中的角色的蛋白质 机器学习 神经疾病和癌症 NA 传统和端到端深度学习方法 蛋白质数据 创建自2022年dbPTM数据库的新蛋白质的三个测试集 NA NA NA NA
2029 2024-08-05
Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms
2023-10, Genomics, proteomics & bioinformatics
综述 该文章综述了蛋白质结构预测领域的研究进展与研究范式的转变 强调了深度学习在蛋白质结构预测中的成功以及研究范式的转变 理论解释神经网络的机制和对蛋白质折叠的知识仍然高度缺乏 探讨蛋白质结构预测的不同研究范式及其演变 涉及多领域研究者对蛋白质结构预测的努力 计算机科学 NA 深度学习 深度神经网络 NA NA NA NA NA NA
2030 2024-08-05
Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL
2023-06, Genomics, proteomics & bioinformatics
研究论文 本研究开发了一种名为TINDL的深度学习框架,用于预测癌症患者对不同治疗的反应和识别药物反应的生物标志物 使用基于组织的归一化方法处理数据,使得该模型能够识别预测药物反应的小基因集合,并使深度学习黑箱可解释 本研究的实验主要基于癌症细胞系,是否能充分适用于临床患者仍需进一步验证 个性化医学中预测癌症患者对不同治疗反应和识别药物反应生物标志物的目标 预临床癌症细胞系和癌症肿瘤数据,这些数据用于训练和验证模型 机器学习 癌症 深度学习 NA 数据集 使用了来自两个大型数据库的癌症细胞系和肿瘤数据 NA NA NA NA
2031 2024-08-05
Deep Learning-Based Dose Prediction for Automated, Individualized Quality Assurance of Head and Neck Radiation Therapy Plans
2023 May-Jun, Practical radiation oncology IF:3.4Q1
研究论文 本研究旨在利用基于深度学习的剂量预测来评估头颈部治疗计划的质量并识别不理想的计划 本研究采用3D Dense Dilated U-Net架构进行剂量预测,显示其在自动化、个性化评估头颈部放疗计划质量中的应用潜力 临床计划的OAR标记存在高的医师间变异性,且仅有83%的医师标记的OAR由其中一位医师提出 研究深度学习在头颈部放疗计划质量评估中的应用 245个体积调制弧治疗(VMAT)头颈部计划以及112个高质量计划 医学影像处理 头颈癌 深度学习 3D Dense Dilated U-Net 计算机断层扫描图像 245个计划 NA NA NA NA
2032 2024-08-05
Applications of Deep Learning in Endocrine Neoplasms
2023-Mar, Surgical pathology clinics
review 本文总结了内分泌癌组织病理学中深度学习研究的现状 强调实验设计、重要发现和关键局限性 NA 探讨深度学习在内分泌癌组织病理学中的应用 内分泌癌的组织样本 数字病理学 内分泌癌 深度学习 NA 组织样本 NA NA NA NA NA
2033 2024-08-07
Response to Letter Regarding the Article "Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model"
2023-12-29, AJNR. American journal of neuroradiology
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2034 2024-08-05
Functional Outcome Prediction in Acute Ischemic Stroke Using a Fused Imaging and Clinical Deep Learning Model
2023-09, Stroke IF:7.8Q1
研究论文 本研究通过融合深度学习模型的扩散加权成像和急性期临床信息,预测急性缺血性中风患者90天的预后。 提出了一种新型的融合深度学习模型,可以减少主观性和用户负担,提高急性缺血性中风预后的预测准确性。 依赖于特定的成像和临床数据,与其他可能影响结果的变量未进行全面考虑。 旨在通过早期急性缺血性中风信息来预测长达90天的临床预后。 640名经历急性缺血性中风的患者。 数字病理学 缺血性中风 深度学习 融合模型 影像和临床数据 640名急性缺血性中风患者 NA NA NA NA
2035 2024-08-07
Regarding "Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model"
2023-09, AJNR. American journal of neuroradiology
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2036 2024-08-05
Radiomic and deep learning characterization of breast parenchyma on full field digital mammograms and specimen radiographs: a pilot study of a potential cancer field effect
2023-Jul, Journal of medical imaging (Bellingham, Wash.)
研究论文 本研究探讨了乳腺组织的放射组学和深度学习特征与乳腺X线摄影图像之间的关系 首次将放射组学和深度学习特征应用于分析肿瘤与非肿瘤区域之间的潜在癌症场效应 本研究样本量较小,仅包括74名患者,可能影响结果的广泛适用性 研究乳腺X线摄影图像中的组织特征与潜在癌症场效应的关系 74名确诊为乳腺癌的女性患者的X线摄影图像和切除标本放射图像 数字病理学 乳腺癌 放射组学 深度学习 图像 74名患者的乳腺X线摄影图像和32名患者的切除标本放射图像 NA NA NA NA
2037 2024-08-05
Heart-Brain 346-7 Score: the development and validation of a simple mortality prediction score for carbon monoxide poisoning utilizing deep learning
2023-07, Clinical toxicology (Philadelphia, Pa.)
研究论文 开发并验证了一种简单的死亡风险预测评分系统,针对一氧化碳中毒患者 提出并验证了Heart-Brain 346-7评分系统,以根据特定变量预测一氧化碳中毒患者的住院和长期死亡风险 本研究的有效性需要进一步验证,且主要依赖于电子病历数据 研究旨在识别患有一氧化碳中毒的患者的急性和长期死亡风险 研究对象为811名一氧化碳中毒的成人患者与462名验证队列患者 数字病理学 NA Firth逻辑回归 NA 电子病历数据 811名在开发队列中的患者和462名在验证队列中的患者 NA NA NA NA
2038 2024-08-05
Multitask Deep Ensemble Prediction of Molecular Energetics in Solution: From Quantum Mechanics to Experimental Properties
2023-Jan-06, Journal of chemical theory and computation IF:5.7Q1
研究论文 本文提出了一种多任务深度集成模型sPhysNet-MT-ens5,能够同时准确预测分子在气相、水相和辛醇相的电子能量及转移自由能 该模型通过任务集成,克服了传统特定任务模型的局限,能在各种条件下高效预测分子能量 模型的表现可能受限于所使用的量子力学计算水平和训练数据的多样性 研究目标是开发能同时进行多种分子能量预测的机器学习模型 研究对象为包含678,916个分子构象的Frag20-solv-678k数据集,以及相关的实验数据集 机器学习 NA 量子力学计算 深度学习 分子构象数据 678,916个分子构象 NA NA NA NA
2039 2024-08-05
Calibrated geometric deep learning improves kinase-drug binding predictions
2023-Dec, Nature machine intelligence IF:18.8Q1
研究论文 本文提出了一种深度学习算法KDBNet,能够利用三维结构数据来预测激酶与药物的结合亲和力 KDBNet结合了3D蛋白质和分子结构数据,利用图神经网络学习结合口袋和药物的几何和空间特征 目前的方法主要集中在局部特征的利用上,可能忽视结合过程的3D特性 探索激酶与化合物之间的相互作用并揭示新型结合活性 激酶和药物分子 机器学习 癌症 深度学习 图神经网络 3D蛋白质和分子结构数据 NA NA NA NA NA
2040 2024-08-05
A comprehensive multi-domain dataset for mitotic figure detection
2023-07-25, Scientific data IF:5.8Q1
研究论文 本文介绍了用于有丝分裂细胞检测的综合多领域数据集MIDOG++ 该数据集是第一个基于不同肿瘤类型、实验室、全切片图像扫描仪和物种的广泛领域转移的有丝分裂细胞数据集 在单一领域训练中观察到显著差异,可能影响深度学习方法的性能 本文旨在自动化有丝分裂细胞检测任务,并评估领域转移的影响 本文研究对象为503个来自七种不同肿瘤类型的组织标本 数字病理学 乳腺癌, 肺癌, 淋巴肉瘤, 神经内分泌肿瘤, 皮肤肥大细胞肿瘤, 皮肤黑色素瘤, (亚)皮下软组织肉瘤 深度学习 NA 图像 503个组织标本 NA NA NA NA
回到顶部