深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 2257 篇文献,本页显示第 2041 - 2060 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2041 2024-08-05
Hyperspectral Imaging in Brain Tumor Surgery-Evidence of Machine Learning-Based Performance
2023-07, World neurosurgery IF:1.9Q2
研究论文 该文章讨论了高光谱成像在脑肿瘤手术中的应用及其机器学习性能的证据 提出了微神经外科高光谱成像指导的合理性和临床范例,并强调了基于机器学习的方法 目前文献中相关文章数量有限,缺乏经过验证的机器学习和公共数据集 研究高光谱成像在神经外科手术中提升组织检测和诊断的潜力 探讨在胶质瘤手术中使用高光谱成像的组织分类性能 数字病理学 脑肿瘤 高光谱成像 深度学习 数据集 有限的病例系列或病例报告
2042 2024-08-05
Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
2023-07, The Lancet. Digital health
研究论文 本文探讨了基于胸部CT扫描的深度学习如何预测非小细胞肺癌患者对免疫检查点抑制剂的响应。 提出了一种名为Deep-CT的集成深度学习模型,能够通过预处理CT数据独立于传统生物标志物进行生存预测。 本研究为回顾性建模研究,可能存在选择偏倚和数据依赖的局限性。 旨在探索深度学习在胸部CT扫描中的应用,以评估其在预测免疫检查点抑制剂疗效中的附加价值。 研究对象为976名接受免疫检查点抑制剂治疗的晚期非小细胞肺癌患者。 计算机视觉 肺癌 深度学习 集成深度学习模型 影像数据 976名患者
2043 2024-08-05
The role of online news sentiment in carbon price prediction of China's carbon markets
2023-Mar, Environmental science and pollution research international
研究论文 该文章探讨了在线新闻情绪在中国碳市场碳价格预测中的作用 通过将在线新闻情绪指数作为非结构化数据引入深度学习模型,提高了碳价格预测的性能 未提及特定的限制因素 提高中国碳市场,尤其是国家碳市场的碳价格预测性能 研究对象为中国国家碳市场和湖北省试点碳市场的碳价格 机器学习 NA 深度学习 长短期记忆网络 (LSTM) 在线新闻情绪指数 未提及具体样本数量
2044 2024-08-05
A Bibliometric Review: Brain Tumor Magnetic Resonance Imagings Using Different Convolutional Neural Network Architectures
2023-02, World neurosurgery IF:1.9Q2
综述 本研究对脑肿瘤的磁共振成像进行了文献计量学评估,重点关注不同卷积神经网络架构的应用 通过文献计量学方法系统整理和分析了现有的关于脑肿瘤的CNN研究文献 本研究未涉及药物剂量的分析 旨在识别脑肿瘤识别的当前研究趋势和热点 脑肿瘤的磁共振成像和卷积神经网络研究文献 计算机视觉 脑肿瘤 卷积神经网络 CNN 文献 NA
2045 2024-08-05
3DCNN predicting brain age using diffusion tensor imaging
2023-Dec, Medical & biological engineering & computing IF:2.6Q3
研究论文 这篇文章提出了一种基于扩散张量成像的3DCNN模型来预测大脑年龄 首次利用扩散张量成像(DTI)数据来预测大脑年龄,并使用3D卷积神经网络模型 未提及具体的限制 研究如何通过神经影像学技术预测大脑年龄 分析来自六个公开数据集的2406个样本(年龄范围为17-60岁) 计算机视觉 NA 扩散张量成像(DTI) 3D卷积神经网络(3DCNN) 影像 2406个样本
2046 2024-08-05
Automatic Localization of Key Structures for Subthalamic Nucleus-Deep Brain Stimulation Surgery via Prior-Enhanced Multi-Object Magnetic Resonance Imaging Segmentation
2023-10, World neurosurgery IF:1.9Q2
研究论文 本文提出了一种通过增强先验的多目标磁共振成像分割方法,自动定位用于下丘脑深部刺激手术的关键结构 本研究创新性地提出了一种自动化的方法来增强下丘脑-深部脑刺激手术中关键脑结构的定位,解决了当前临床实践中对放射科医生经验的依赖 本研究未提及样本大小和在不同临床背景下方法的适用性 本文旨在提高下丘脑深部刺激手术中关键脑结构的定位精度和效率 本文研究对象包括下丘脑、红核、脑沟、脑回和脑室等关键脑结构 数字病理学 帕金森病 深度学习 U-Net 磁共振成像图像 NA
2047 2024-08-05
Automated detection and localization of pericardial effusion from point-of-care cardiac ultrasound examination
2023-Aug, Medical & biological engineering & computing IF:2.6Q3
研究论文 本研究开发了一种深度学习方法,以快速准确地识别和定位心包积液。 引入了基于YoloV3算法的深度学习方法,显著提高了心包积液检测的准确性和定位能力。 未提及关于算法在不同设备或操作员技能水平上的广泛适用性限制。 旨在提高心包积液在临床超声检查中的识别和定位效率。 对包含心包积液的病人以及对照组的心脏超声检查图像进行分析。 数字病理学 心脏疾病 POCUS YoloV3 图像 共分析了37个心包积液病例和39个阴性对照
2048 2024-08-05
Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children
2023-06-01, JAMA network open IF:10.5Q1
研究论文 本研究开发了一种基于深度学习的模型,用于儿童头部CT图像中检测视网膜出血 该研究首次使用深度学习图像分析来检测小儿头部CT图像中的视网膜出血 可能需要外部前瞻性验证以确认模型的准确性 评估深度学习模型在儿童头部CT中检测视网膜出血的有效性 301名诊断为虐待性头部创伤(AHT)的儿童患者 计算机视觉 NA 深度学习 NA 图像 301名患者
2049 2024-08-05
Machine Learning on Visibility Graph Features Discriminates the Cognitive Event-Related Potentials of Patients with Early Alzheimer's Disease from Healthy Aging
2023-May-07, Brain sciences IF:2.7Q3
研究论文 本文提出了一种使用可视性图的方法,对阿尔茨海默病患者和健康老年人进行分类 该研究通过可视性图的特征来区分早期阿尔茨海默病患者与健康老年人的认知事件相关电位 研究可能只针对特定的实验条件,未考虑其他可能影响结果的因素 探索基于EEG信号的可视性图特征在阿尔茨海默病和健康老年人分类中的应用 早期阿尔茨海默病患者与健康老年人群体 机器学习 阿尔茨海默病 EEG 传统机器学习和深度学习算法 EEG信号 研究涉及的样本数量未明确说明
2050 2024-08-05
In silico evolution of protein binders with deep learning models for structure prediction and sequence design
2023-May-03, bioRxiv : the preprint server for biology
研究论文 本文探讨了一种利用深度学习模型进行蛋白质结合体设计的方法。 提出了使用深度学习模型进行蛋白质结构预测和序列设计的迭代流程,并成功设计出自抑制型(PD-L1拮抗剂)结构。 研究未进行实验亲和力培养,结果需要进一步验证。 旨在设计能够被蛋白酶条件性激活的自抑制型拮抗剂。 研究对象为PD-L1拮抗剂的自抑制结构域。 计算机视觉 NA 深度学习 AlphaFold2与ProteinMPNN 蛋白质序列 23个设计的自抑制结构域
2051 2024-08-05
Automated Inline Myocardial Segmentation of Joint T1 and T2 Mapping Using Deep Learning
2023-Jan, Radiology. Artificial intelligence
研究论文 本研究开发了一种人工智能解决方案,旨在实现联合心脏MRI短轴T1和T2映射的自动分割和分析 该研究创新性地使用深度学习方法实现了心脏MRI映射的自动分割,性能接近人类专家 该研究的局限在于使用的样本来自两家医院,可能影响结果的普遍适用性 开发一个自动化的AI分割和分析工具,提高心脏MRI的操作效率和准确性 从807名患者的4240个映射中选择的心脏MRI数据进行了分析 数字病理学 NA 人工智能 卷积神经网络 影像 4240个映射,来自807名患者
2052 2024-08-05
RelCurator: a text mining-based curation system for extracting gene-phenotype relationships specific to neurodegenerative disorders
2023-08, Genes & genomics IF:1.6Q3
研究论文 该文章提出了一个文本挖掘基础的Curator系统,旨在提取与神经退行性疾病相关的基因-表型关系的句子 本研究的创新点在于使用双向门控递归单元网络和BioWordVec词嵌入,开发了一种深度学习模型来预测基因-表型关系 未提及特定限制 旨在从医学文献中提取基因-表型关系,以支持精准医学 研究对象为与神经退行性疾病相关的基因和表型实体 自然语言处理 神经退行性疾病 深度学习 双向门控递归单元网络 (BiGRU) 文本 超过130,000个标记的PubMed句子
2053 2024-08-05
Batch-balanced focal loss: a hybrid solution to class imbalance in deep learning
2023-Sep, Journal of medical imaging (Bellingham, Wash.)
研究论文 验证了一种名为批平衡焦点损失(BBFL)的方法在处理不平衡数据集时对卷积神经网络(CNN)分类性能的提升效果 BBFL结合了批平衡和焦点损失两种策略以应对类别不平衡问题 本文未讨论BBFL在其他类型数据集上的表现 提升卷积神经网络在不平衡数据集上的分类能力 针对不平衡的视网膜神经纤维层缺损(RNFLD)和青光眼图像数据集进行研究 计算机视觉 青光眼 卷积神经网络(CNN) InceptionV3, MobileNetV2 图像 视网膜神经纤维层缺损数据集(n=7,258); 青光眼数据集(n=7,873)
2054 2024-08-05
Machine learning in computational histopathology: Challenges and opportunities
2023-09, Genes, chromosomes & cancer
review 文章回顾了机器学习在计算数字病理学中的应用及其挑战与机遇 提供了机器学习在数字病理学领域成功应用的背景和临床任务的自动化情况 未详细讨论特定机器学习模型的局限性和实际应用的障碍 探讨机器学习在数字病理学中的应用潜力和未来发展方向 数字病理学图像及其在癌症诊断和分期中的应用 数字病理学 癌症 机器学习,深度学习 NA 数字病理图像 大规模数字病理切片数据集
2055 2024-08-05
Automatic retinoblastoma screening and surveillance using deep learning
2023-08, British journal of cancer IF:6.4Q1
研究论文 本文研究了一种基于深度学习的视网膜母细胞瘤自动筛查和监测方法 提出了一种深度学习算法DLA-RB,能够准确区分正常眼底、稳定视网膜母细胞瘤和主动视网膜母细胞瘤 目前样本集中仅包括在北京同仁医院就诊的患者,可能影响结果的普遍适用性 旨在应用深度学习算法降低随访和后代筛查的负担 视网膜母细胞瘤患者及其相关影像数据 计算机视觉 视网膜母细胞瘤 深度学习 深度学习助手(DLA-RB) 图像 共收集了36623张图像和103名患者的139只眼睛
2056 2024-08-05
Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis
2023-11, World neurosurgery IF:1.9Q2
meta-analysis 本研究评估了传统机器学习方法与深度学习在脑膜瘤分类、分级、预后预测和分割中的表现 首次系统性比较了传统机器学习与深度学习在脑膜瘤管理中的性能 由于性能指标报告不足,无法进一步统计分析其他性能指标 评估脑膜瘤管理中传统机器学习与深度学习算法的表现 脑膜瘤的分类、分级、预后预测和分割 机器学习 脑膜瘤 机器学习 传统机器学习,深度学习 文献数据 534条记录筛选,包含43篇文章
2057 2024-08-05
Automated segmentation of five different body tissues on computed tomography using deep learning
2023-Jan, Medical physics IF:3.2Q1
研究论文 该文开发并验证了一种用于CT扫描上五种不同身体组织的自动分割计算机工具。 文中采用了训练与标注相结合的策略,提高了注释效率,并比较了多种卷积神经网络在组织分割中的表现。 不同CNN模型在分割身体组织时未表现出显著差异。 旨在开发一种高效的计算工具,以自动化分割CT扫描显示的多种身体组织。 该研究对象为100个CT扫描样本,涉及内脏脂肪组织、皮下脂肪组织、肌肉及骨骼等多种身体组织。 计算机视觉 NA 卷积神经网络(CNN) UNet, R2Unet, UNet++ 图像 100个CT扫描样本
2058 2024-08-05
DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images
2023-Nov-13, Research square
研究论文 本文提出了一种深度学习方法DeepN4,用于纠正T1加权MRI图像中的偏差场 本文创新地将深度学习应用于N4ITK偏差场校正,提供了一种便携灵活且完全可微分的方法 研究可能受限于训练数据集的多样性和深度学习模型的复杂性 研究旨在改进T1加权MRI图像的偏差场校正方法 该研究对象为72台不同扫描仪和不同年龄范围的8个独立队列的T1w MRI图像 数字病理学 NA 深度学习 深度神经网络 医学图像 72台扫描仪,8个独立队列
2059 2024-08-05
Deep learning-based fast volumetric imaging using kV and MV projection images for lung cancer radiotherapy: A feasibility study
2023-Sep, Medical physics IF:3.2Q1
研究论文 该研究提出了一种快速体积成像方法,用于肺癌放射治疗,旨在减少获取时间并提高治疗的准确性 创新点在于结合了2D和3D网络,以快速生成高质量的3D成像,并增强了图像的一致性和准确性 结果基于模拟数据和真实设备的幻影结果,未进行在临床环境下的全面验证 研究旨在开发一种有效的体积成像方法,以提高肺癌放射治疗的准确性和效率 研究对象为50名肺癌患者,通过对每个相位的CT进行射线追踪生成正交的kV和MV成像对 数字病理 肺癌 正交kV/MV成像 结合2D和3D网络的模型 图像 50名肺癌患者
2060 2024-08-05
An X-Ray C-Arm Guided Automatic Targeting System for Histotripsy
2023-02, IEEE transactions on bio-medical engineering
研究论文 本研究提出了一种基于CBCT的自动靶向系统用于非侵入性治疗癌症的Histotripsy技术。 提出了一种替代超声成像的X射线C臂靶向方法,结合深度学习和数字模型提高靶点定位精度。 实验主要在验证物模型上进行,临床应用的准确性和效果尚待进一步验证。 探讨CBCT在Histotripsy靶向中的应用,提升靶点定位的准确性和自动化程度。 研究主要针对肿瘤靶点的精准定位与治疗技术。 数字病理学 癌症 CBCT 深度学习 影像 在虚拟模型实验中评估了靶向精度
回到顶部