深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 2257 篇文献,本页显示第 2101 - 2120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2101 2024-08-05
Automatic Surgical Skill Assessment System Based on Concordance of Standardized Surgical Field Development Using Artificial Intelligence
2023-08-01, JAMA surgery IF:15.7Q1
研究论文 本文开发了一种基于人工智能的自动化外科技能评估系统 提出了一种通过深度学习模型识别标准化外科领域的方法,并评估其在自动外科技能评估中的可行性 本研究使用的样本仅限于日本的内镜外科视频,可能影响适用性 旨在开发能够识别标准化外科领域的深度学习模型 研究对象为在内镜下进行的乙状结肠切除术的视频 计算机视觉 NA 深度学习 NA 视频 共650个内部手术视频,其中60个用于模型构建,60个用于验证
2102 2024-08-05
Review of Performance Improvement of a Noninvasive Brain-computer Interface in Communication and Motor Control for Clinical Applications
2023, Juntendo Iji zasshi = Juntendo medical journal
综述 本文综述了非侵入性脑机接口(BCI)在通信和运动控制中的性能提升及其临床应用 通过总结近年来BCI系统的进展,强调了临床应用中的关键挑战和潜在解决方案 医学BCI领域的训练样本有限,因此深度学习模型没有得到充分利用 研究非侵入性BCI系统在临床应用中的性能提升与挑战 主要针对非侵入性脑机接口的进展和临床应用进行总结 计算机视觉 NA EEG 深度学习模型 EEG数据 样本量有限,主要针对困难生成EEG数据的患者
2103 2024-08-05
Coupled Reconstruction of Cortical Surfaces by Diffeomorphic Mesh Deformation
2023-Dec, Advances in neural information processing systems
PMID:38835722
研究论文 本文提出了一个新的深度学习框架,用于从脑部磁共振影像精确重建皮质表面 本文的创新之处在于联合重建内层、外层及其中厚度表面,并直接从3D MRI中估计皮质厚度 本文未提及任何具体的局限性 研究的目的是提高脑部皮质表面的重建精度和拓扑正确性 研究对象为脑部磁共振成像数据中的皮质表面 数字病理学 NA 深度学习 NA 3D MRI 在两个大规模神经影像数据集ADNI和OASIS上进行评估
2104 2024-08-05
Review of machine learning and deep learning models for toxicity prediction
2023-11, Experimental biology and medicine (Maywood, N.J.)
综述 本文总结了近年来基于机器学习和深度学习的毒性预测模型。 综述了各种机器学习和深度学习算法在毒性预测中的应用,强调了数据集质量对模型性能的影响。 不同数据集中对相同化学品的毒性分配存在差异,说明缺乏基准数据集以开发可靠的毒性预测模型。 评估化学品的毒性以保护公众健康和环境。 近年来开发的毒性预测模型,特别是基于机器学习和深度学习的模型。 机器学习 NA 机器学习和深度学习 支持向量机,随机森林,深度神经网络等 数据集 NA
2105 2024-08-05
Virtual and Augmented Reality in Interventional Radiology: Current Applications, Challenges, and Future Directions
2023-Sep, Techniques in vascular and interventional radiology IF:1.4Q3
研究论文 虚拟现实和增强现实在介入放射学中的应用及未来方向 探讨了VR和AR在介入放射学中的潜在优势及最新技术进展 面临导航系统限制、高成本、临床接受度低以及技术约束等挑战 研究虚拟现实和增强现实在介入放射学中的应用及其未来的发展 关注医疗影像的可视化与导航,以及患者护理和教育培训方面 计算机视觉 NA 深度学习技术 NA 医疗影像 NA
2106 2024-08-05
Mapping Malaria Vector Habitats in West Africa: Drone Imagery and Deep Learning Analysis for Targeted Vector Surveillance
2023-May-26, Remote sensing IF:4.2Q2
研究论文 本研究利用无人机影像和深度学习方法识别西非地区的疟疾传播媒介栖息地 该研究开发了一种基于区域兴趣和深度学习的方法来识别与媒介繁殖地相关的土地覆盖类型 研究中对交叉验证的分析方法限制于特定的样本和环境 研究旨在通过深度学习方法识别与疟疾传播媒介繁殖地相关的环境因素 研究对象为布基纳法索和科特迪瓦两个疟疾流行地区的无人机影像 计算机视觉 疟疾 深度学习 未指定 影像 使用来自两个疟疾流行地区的无人机图像
2107 2024-08-05
iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction
2023-05, Nature protocols IF:13.1Q1
研究论文 本文提出了一种针对婴儿大脑皮层重建的深度学习计算管道 提出了一种稳健的、多站点适用的婴儿专用计算管道,能够处理婴儿脑MRI数据的多样性和挑战 仅基于Baby Connectome Project的数据进行训练,可能无法适应所有类型的婴儿脑MRI数据 旨在提高婴儿脑MRI的处理精度和效率 多站点和多模态的婴儿脑MRI数据集 数字病理学 NA 深度学习 NA MRI图像 处理超过16,000个婴儿MRI扫描
2108 2024-08-05
Using mesoscopic tract-tracing data to guide the estimation of fiber orientation distributions in the mouse brain from diffusion MRI
2023-04-15, NeuroImage IF:4.7Q1
research paper 本研究旨在利用中观轨迹追踪数据改进小鼠脑部扩散MRI的纤维方向分布估计 提出了一种利用中观轨迹追踪数据训练深度学习网络的方法,以改善小鼠脑部FODs的估计 未提及具体的局限性 改善小鼠脑部扩散MRI信号中的纤维方向估计 小鼠脑部的纤维方向分布 数字病理学 NA 扩散MRI 深度学习网络 MRI数据 使用了来自艾伦小鼠脑连接图谱的中观轨迹追踪数据
2109 2024-08-05
Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry
2023-04, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 评估深度学习模型在不同数据集上进行自动化评估的泛化能力 提出了将预训练的深度学习模型应用于不同MR扫描仪和获取参数的数据集上,以评估其泛化能力 深度学习模型的泛化能力依赖于训练数据集的特性,可能在其他类型的病理情况下表现不佳 评估深度学习模型在没有微调的情况下对新数据集的适用性 59名受试者及其不同的MR扫描数据集 数字病理学 NA qDESS NA MRI图像 59名受试者(26名女性),分为四个研究小组
2110 2024-08-05
Cross-scanner harmonization methods for structural MRI may need further work: A comparison study
2023-04-01, NeuroImage IF:4.7Q1
研究论文 该研究评估了多种扫描仪标定方法对脑部MRI影像的一致性影响 比较了深度学习、直方图匹配和统计方法在MRI扫描一致性中的应用,提供了未来研究的框架 现有方法在长时间数据集上均未能有效和谐处理 旨在提高针对不同扫描仪的MRI数据的一致性 涉及在GE和西门子扫描仪上扫描的参与者数据 数字病理学 衰老和癫痫 深度学习、直方图匹配和统计方法 深度学习模型(如CycleGAN和CGAN) MRI影像数据 涉及共567名参与者,113名为交叉扫描者,454名为纵向扫描者
2111 2024-08-05
The connectome of an insect brain
2023-03-10, Science (New York, N.Y.)
研究论文 本文映射了一个昆虫大脑的突触分辨率连接组,展示了其神经元网络的架构和功能 揭示了丰富的神经回路结构特点,如多感官整合和高度重复的电路结构 未提及具体的实验验证或应用研究 了解昆虫大脑的网络架构与功能 研究了一个具有丰富行为的昆虫幼虫大脑 数字病理学 NA NA NA 神经元连接数据 3016个神经元和548,000个突触
2112 2024-08-05
DOMINO: Domain-aware loss for deep learning calibration
2023-Mar, Software impacts IF:1.3Q3
研究论文 本文提出了一种新的领域感知损失函数,用于校准深度学习模型 提出了一种基于类之间相似性的分类惩罚的新型损失函数,改进了模型的校准 未提及具体的限制 研究深度学习模型的校准方法,特别是在医疗影像任务中的应用 深度学习模型及其在医疗影像任务中的校准 计算机视觉 NA 深度学习 NA NA NA
2113 2024-08-05
Characterizing browser-based medical imaging AI with serverless edge computing: towards addressing clinical data security constraints
2023-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文提出了一种基于浏览器的医学成像人工智能部署系统,以增强临床数据安全性 该研究创新性地利用无服务器边缘计算实现隐私保护的医学成像AI应用,避免了常规云计算的隐私风险 研究中未明确讨论与其他类型隐私保护模型的比较 研究旨在解决医学成像AI应用中的数据隐私问题 研究对象为利用CT进行肺癌筛查的3D医学图像分割模型 数字病理学 肺癌 无服务器边缘计算 3D卷积神经网络 (CNN) 医学图像 NA
2114 2024-08-05
Multi-site cross-organ calibrated deep learning (MuSClD): Automated diagnosis of non-melanoma skin cancer
2023-02, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种新的深度学习方法MuSClD,用于改善非黑色素瘤皮肤癌的自动诊断。 创新点在于利用外部测试机构的非目标器官的全片图像进行校准,来减小训练数据和测试数据之间的领域转移。 本研究主要集中在非黑色素瘤皮肤癌的诊断,可能无法直接应用于其他类型的癌症或疾病。 研究的目的是提高深度学习分类器在不同测试地点上对非黑色素瘤皮肤癌的通用性。 研究对象为基本细胞癌、原位鳞状细胞癌和侵袭性鳞状细胞癌。 计算机视觉 非黑色素瘤皮肤癌 深度学习 NA 全片图像 训练样本85,测试样本352
2115 2024-08-05
Antibodies as drugs-a Keystone Symposia report
2023-01, Annals of the New York Academy of Sciences IF:4.1Q1
评论 本文讨论了抗体作为药物的最新研究进展 介绍了抗体治疗的最新方法及其在多种疾病中的应用 未提供具体的实验数据或研究样本 探讨抗体作为药物的研究前沿 关注于抗体的治疗潜力及其工程化 NA 肿瘤, 自身免疫疾病, 传染病 深度学习 NA NA NA
2116 2024-08-05
A biologically inspired architecture with switching units can learn to generalize across backgrounds
2023-Nov, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 该文章展示了一种生物启发的网络结构,通过切换单元可以学习在不同背景下进行泛化 提出了一种瓶颈切换网络,这是一种类生物的架构,可以避免在新背景下的灾难性遗忘 未详细讨论与其他生物启发机制的比较 研究如何通过生物感知原则来提高人工系统的环境适应能力 使用MNIST数字及CIFAR-10数据集探索在不同背景下的数字分类 机器学习 NA NA 切换网络 图像 使用MNIST数字数据集和CIFAR-10数据集的样本
2117 2024-08-05
A Multilabel Text Classifier of Cancer Literature at the Publication Level: Methods Study of Medical Text Classification
2023-Oct-05, JMIR medical informatics IF:3.1Q2
研究论文 本研究旨在建立一个多标签分类器,以提高癌症文献的分类分辨率 通过结合BERT和TextRNN模型,实现了对癌症文献的高分辨率多标签分类 未来需要收集更多来自不同领域的数据以验证模型的可扩展性和扩展性 解决现有低分辨率癌症文献分类的问题,以支持临床相关性文献的高效检索 癌症研究的文献,涉及70699篇癌症出版物 自然语言处理 癌症 BERT + X BERT + TextRNN 文本 70699篇癌症出版物
2118 2024-08-05
Automated fatty liver disease detection in point-of-care ultrasound B-mode images
2023-May, Journal of medical imaging (Bellingham, Wash.)
研究论文 本文提出了一种自动化的脂肪肝疾病检测算法,利用非专家获取的实时超声B模式图像 研究中介绍了如何在低质量的B模式图像上,应用深度学习算法进行肝脏脂肪变的分类,并且可以在非专家操作下实现 尽管表现良好,但该算法依赖于低质量的B模式图像和最小的超声采集培训 研究旨在开发一种用于非酒精性脂肪肝疾病的自动筛查算法 研究对象为478名患者,他们的B模式图像由非专家医护人员获取 数字病理学 NAFLD 深度学习 DenseNet-121 图像 478名患者的图像数据
2119 2024-08-05
Guided diffusion for inverse molecular design
2023-Oct, Nature computational science IF:12.0Q1
研究论文 本文介绍了一种新的逆分子设计方法GaUDI,其结合了属性预测的等变图神经网络和生成扩散模型 GaUDI通过结合图神经网络和生成扩散模型,实现了对分子属性的条件设计,并能够生成超出初始分布的分子 未提及具体的局限性 提高分子设计的效率和有效性,特别是在有机电子应用中 生成的475,000个多环芳香系统的数据集 机器学习 NA 生成扩散模型,图神经网络 NA 数据集 475,000个多环芳香系统
2120 2024-08-05
VOC transport in an occupied residence: Measurements and predictions via deep learning
2023-Sep-20, The Science of the total environment
研究论文 本研究监测和预测了占用居住环境中的挥发性有机化合物(VOCs) 通过深度学习模型预测了在占用居住环境中十种典型VOCs的浓度,并发现人类活动对VOCs排放有显著影响 在研究中未涉及更广泛的环境变量和更多的VOCs种类 研究居住环境中VOCs的传输特性及其暴露评估 在占用的住宅中监测和预测十种典型VOCs 数字病理学 NA 深度学习 长短期记忆网络(LSTM) 时间序列数据 10种典型VOCs
回到顶部