本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
301 | 2025-03-14 |
Deep Learning for Automated Measurement of Patellofemoral Anatomic Landmarks
2023-Jul-08, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10070815
PMID:37508842
|
研究论文 | 本文应用深度学习技术自动测量膝关节解剖标志,以更好地理解解剖结构,从而改善治疗效果 | 首次开发了一个深度学习回归模型,用于自动标注髌股关节解剖标志,并在生理和病理CT影像上进行大规模训练 | 健康队列的沟角测量存在统计学显著差异 | 通过深度学习自动测量膝关节解剖标志,以改善对髌股关节解剖结构的理解 | 483名患者的膝关节CT影像,包括计划进行膝关节置换的患者和健康膝关节解剖的患者 | 计算机视觉 | 膝关节疾病 | 深度学习 | 修改后的ResNet50架构 | CT影像 | 483名患者的14,652张图像 |
302 | 2025-03-12 |
Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients
2023-05, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
IF:5.4Q1
DOI:10.1016/j.echo.2023.01.015
PMID:36754100
|
研究论文 | 本文介绍了EchoNet-Peds,一种基于视频的深度学习算法,用于自动评估儿科患者的左心室射血分数(EF) | EchoNet-Peds是首个专门针对儿科患者开发的深度学习算法,能够匹配人类专家在左心室分割和射血分数评估方面的表现 | 尽管EchoNet-Peds在儿科数据上表现优异,但其在成人数据上的适用性尚未验证 | 开发一种自动化工具,用于准确评估儿科患者的左心室射血分数和识别收缩功能障碍 | 儿科患者的超声心动图数据 | 计算机视觉 | 心血管疾病 | 深度学习 | CNN | 视频 | 4,467个儿科超声心动图 |
303 | 2025-03-11 |
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-020218
PMID:37258226
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
304 | 2025-03-11 |
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery
IF:4.5Q1
DOI:10.1136/jnis-2023-020804
PMID:37714539
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
305 | 2025-03-10 |
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
2023-Oct-17, ArXiv
PMID:37904746
|
研究论文 | 本文通过对称纤维化方法简化了细菌的基因调控网络,保留了信息流并突出了网络的计算能力 | 使用对称纤维化方法简化复杂的生物系统,揭示细菌基因调控网络的计算核心 | NA | 研究细菌基因调控网络的计算能力和信息传递机制 | 细菌的基因调控网络 | 生物信息学 | NA | 对称纤维化方法 | NA | 基因调控网络数据 | NA |
306 | 2025-03-10 |
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
2023-04, Digestive diseases and sciences
IF:2.5Q2
DOI:10.1007/s10620-022-07640-3
PMID:35909203
|
研究论文 | 本文评估并验证了基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 结合深度学习特征和临床预测因子建立了一个nomogram,显著提高了淋巴结转移预测的准确性 | 研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 | 评估和验证基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 胃癌患者 | 计算机视觉 | 胃癌 | 计算机断层扫描(CT) | ResNet50, 随机森林(RF) | 图像 | 347名患者(训练队列:242,测试队列:105) |
307 | 2025-03-09 |
MRI-Based Deep Learning Method for Classification of IDH Mutation Status
2023-Sep-05, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10091045
PMID:37760146
|
研究论文 | 本研究旨在开发基于T2加权MRI图像的深度学习网络,用于非侵入性IDH突变状态分类,并与多对比网络进行比较 | 开发了仅使用T2加权图像的深度学习网络(T2-net)和多对比网络(MC-net),并在超过1100个样本上进行了测试,这是迄今为止最大的基于图像的IDH分类研究 | NA | 开发用于IDH突变状态分类的深度学习算法 | 胶质瘤患者的MRI图像和基因组数据 | 计算机视觉 | 胶质瘤 | MRI | 深度学习网络(T2-net和MC-net) | 图像 | 超过1100个样本,包括来自多个数据库的病例 |
308 | 2025-03-03 |
Few-shot learning using explainable Siamese twin network for the automated classification of blood cells
2023-Jun, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-023-02804-3
PMID:36800155
|
研究论文 | 本文提出了一种基于对比学习的Siamese twin network (STN)模型,用于从少量图像中训练并自动分类健康的外周血细胞 | 使用EfficientNet-B3作为基础模型,提出了一种新的类激活映射方案,以提高模型的可解释性 | 模型训练依赖于少量数据,可能影响其泛化能力 | 开发一种自动化且可解释的血液细胞分类方法 | 健康的外周血细胞 | 计算机视觉 | NA | 对比学习 | Siamese twin network (STN), EfficientNet-B3 | 图像 | 17,092张公开的细胞组织学图像,其中6%用于STN训练,6%用于少样本验证,88%用于少样本测试 |
309 | 2025-03-02 |
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
2023-12, Health services research
IF:3.1Q1
DOI:10.1111/1475-6773.14210
PMID:37534741
|
研究论文 | 开发了一种基于自然语言处理(NLP)的算法,用于从非结构化的电子健康记录(EHR)中识别阿尔茨海默病及相关痴呆(ADRD)患者的健康社会决定因素(SDoH) | 开发了一种基于规则的NLP算法,用于识别七个SDoH领域,并与深度学习和正则化逻辑回归方法进行了比较 | 在住房和药物不安全方面的SDoH识别性能较差 | 识别ADRD患者的健康社会决定因素(SDoH) | 阿尔茨海默病及相关痴呆(ADRD)患者 | 自然语言处理 | 老年病 | 自然语言处理(NLP) | 基于规则的NLP算法、深度学习、正则化逻辑回归 | 文本 | 1000份医疗记录,来自231名ADRD患者 |
310 | 2025-03-02 |
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28680
PMID:36939778
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
311 | 2025-03-02 |
Editorial for "Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor and Multi-disease Study"
2023-10, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28661
PMID:36847749
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
312 | 2025-03-01 |
Commentary on "A systematic review on machine learning and deep learning techniques in cancer survival prediction": Validation of survival methods
2023-10, Progress in biophysics and molecular biology
DOI:10.1016/j.pbiomolbio.2023.08.001
PMID:37579795
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
313 | 2025-03-01 |
A deep learning-based electrocardiogram risk score for long term cardiovascular death and disease
2023-Sep-12, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-023-00916-6
PMID:37700032
|
研究论文 | 本文介绍了一种基于深度学习的静息心电图风险评分系统SEER,用于预测长期心血管死亡和疾病风险 | 开发了SEER,一种基于深度卷积神经网络的模型,仅通过静息心电图即可准确预测长期心血管死亡和疾病风险 | 研究主要基于斯坦福大学医学中心的数据,虽然在其他两个医疗中心进行了独立评估,但可能仍需更多样化的数据集验证其普适性 | 探索静息心电图在长期心血管风险评估中的应用,并开发一种新的风险评估工具 | 静息心电图数据 | 机器学习 | 心血管疾病 | 深度卷积神经网络 | CNN | 心电图数据 | 斯坦福大学医学中心收集的大量静息12导联心电图数据,并在Cedars-Sinai医疗中心和哥伦比亚大学欧文医学中心进行了独立评估 |
314 | 2025-03-01 |
Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms
2023-05, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
IF:5.4Q1
DOI:10.1016/j.echo.2022.12.014
PMID:36566995
|
研究论文 | 本研究利用深度学习模型,通过经胸超声心动图(TTE)视频预测冠状动脉钙化(CAC)评分,并评估其在预测1年生存率方面的效果 | 首次使用基于视频的卷积神经网络(CNN)从TTE视频中预测CAC评分,并验证其在外部数据集上的有效性 | 研究样本量相对较小,外部验证数据集仅有92个TTE视频 | 探索TTE视频是否可用于预测冠状动脉钙化评分,并评估其与CT CAC评分在预测1年生存率方面的相似性 | 2,881个TTE视频与冠状动脉钙化CT配对的样本,以及92个外部验证TTE视频 | 计算机视觉 | 心血管疾病 | 深度学习 | 卷积神经网络(CNN) | 视频 | 2,881个TTE视频与CT配对的样本,以及92个外部验证TTE视频 |
315 | 2025-02-28 |
DeepOmicsAE: Representing Signaling Modules in Alzheimer's Disease with Deep Learning Analysis of Proteomics, Metabolomics, and Clinical Data
2023-12-15, Journal of visualized experiments : JoVE
DOI:10.3791/65910
PMID:38163278
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
316 | 2025-02-28 |
Artificial Intelligence-based System for Detecting Attention Levels in Students
2023-12-15, Journal of visualized experiments : JoVE
DOI:10.3791/65931
PMID:38163270
|
研究论文 | 本文提出了一种基于人工智能的系统,用于检测学生的注意力水平,通过分析学生的情绪、视线方向、身体姿势和生物特征数据来帮助教师优化教学过程 | 创新点在于整合多种数据源(如情绪、视线、姿势和生物特征数据)来训练AI系统,以自动识别学生的注意力水平,并提出创建标注数据集和注意力分类器的方案 | 整合不同类型的数据具有挑战性,需要创建标注数据集,且依赖专家输入和现有研究进行准确标注 | 研究目标是利用AI技术自动检测学生的注意力水平,以帮助教师调整教学策略,优化教学效果 | 研究对象是课堂中的学生 | 机器学习 | NA | 深度学习 | NA | 图像、生物特征数据 | 未明确提及样本数量 |
317 | 2025-02-27 |
Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey
2023-Jan-04, Life (Basel, Switzerland)
DOI:10.3390/life13010146
PMID:36676093
|
综述 | 本文对基于机器学习和深度学习技术的皮肤病变分析和癌症检测方法进行了全面调查 | 提供了迄今为止应用于皮肤病变检查的方法、技术和方法的广泛文献综述,包括预处理、分割、特征提取、选择和分类方法 | 由于复杂和罕见的特征,皮肤病变分析仍存在一些挑战 | 调查现有技术用于皮肤癌发现,找出障碍以帮助研究人员贡献于未来研究 | 皮肤病变和皮肤癌 | 计算机视觉 | 皮肤癌 | 深度学习和机器学习 | NA | 图像 | NA |
318 | 2025-02-27 |
Federated learning for diagnosis of age-related macular degeneration
2023, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2023.1259017
PMID:37901412
|
研究论文 | 本文提出了一种联邦学习方法,用于训练深度学习模型以分类年龄相关性黄斑变性(AMD),使用光学相干断层扫描图像数据 | 采用残差网络和视觉变换器编码器进行正常与AMD的二元分类,并整合了四种独特的域适应技术以解决由不同机构间数据分布不均引起的域转移问题 | 研究未探讨更深层次的模型和其他联邦学习策略的性能,未来需要进一步探索 | 研究目的是通过联邦学习方法提高年龄相关性黄斑变性的诊断准确性 | 年龄相关性黄斑变性(AMD)的光学相干断层扫描图像数据 | 计算机视觉 | 老年疾病 | 光学相干断层扫描 | 残差网络, 视觉变换器 | 图像 | NA |
319 | 2025-02-26 |
Deep Learning-Aided Modulation Recognition for Non-Orthogonal Signals
2023-May-31, Sensors (Basel, Switzerland)
DOI:10.3390/s23115234
PMID:37299960
|
研究论文 | 本文旨在开发基于深度学习的自动调制识别方法,用于非正交传输信号的下行和上行链路 | 提出了基于双向长短期记忆网络(BiLSTM)的AMR方法,利用长期数据依赖性自动学习不规则信号星座形状,并引入迁移学习以提高识别准确性和鲁棒性;针对上行链路非正交信号,开发了基于注意力机制的时空融合网络,有效提取时空特征 | 未提及具体样本量或实验数据集的大小 | 开发高效的自动调制识别方法,适用于非正交传输系统 | 非正交传输信号的下行和上行链路 | 机器学习 | NA | 深度学习 | BiLSTM, 注意力机制, CNN | 信号数据 | NA |
320 | 2025-02-26 |
The Effect of Dataset Imbalance on the Performance of SCADA Intrusion Detection Systems
2023-Jan-09, Sensors (Basel, Switzerland)
DOI:10.3390/s23020758
PMID:36679553
|
研究论文 | 本研究探讨了数据集不平衡对SCADA入侵检测系统性能的影响 | 研究了数据不平衡对SCADA入侵检测系统的影响,并比较了多种数据平衡技术的效果 | 仅使用了两个不平衡数据集进行研究,可能无法涵盖所有情况 | 理解数据不平衡对深度学习SCADA入侵检测系统的影响 | SCADA系统的入侵检测系统 | 机器学习 | NA | 深度学习算法 | CNN-LSTM | SCADA系统数据 | 两个数据集:Morris电力数据集和CICIDS2017数据集 |