深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 1805 篇文献,本页显示第 301 - 320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
301 2024-10-15
Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related?
2023-Nov-02, Pharmaceuticals (Basel, Switzerland)
研究论文 研究构建了渗出性年龄相关性黄斑变性(nAMD)的诊断和治疗分子网络,并探讨了其与脑神经退行性疾病的关联 采用多层网络分析、模糊逻辑模型和深度学习技术,识别了nAMD中的关键基因、miRNAs、lncRNAs、代谢物和SNPs,并发现这些与阿尔茨海默病、精神分裂症等神经退行性疾病有关 研究主要集中在分子网络的构建和关联分析,未涉及临床试验或实际治疗效果的验证 旨在识别nAMD发病机制中的关键分子,并探讨其与其他神经退行性疾病的关联 nAMD中的蛋白质、miRNAs、lncRNAs、代谢物和SNPs 机器学习 眼科疾病 多层网络分析、模糊逻辑模型、遗传算法 LSTM网络 基因、miRNAs、lncRNAs、代谢物、SNPs 30个关键基因、6个miRNAs、4个lncRNAs、3个关键代谢物、9个关键SNPs
302 2024-10-15
Choroidal Vessel and Stromal Volumetric Analysis After Photodynamic Therapy or Focal Laser for Central Serous Chorioretinopathy
2023-11-01, Translational vision science & technology IF:2.6Q2
研究论文 研究使用体积分析量化中心性浆液性脉络膜视网膜病变(CSCR)患者在接受光动力疗法(PDT)和局部激光光凝(PC)后脉络膜血管和基质的体积变化 首次使用深度学习方法进行三维光学相干断层扫描体积分析,量化PDT和PC治疗后脉络膜血管和基质的体积变化 这是一项回顾性比较研究,样本量较小,且仅包括CSCR患者 研究PDT和PC治疗对CSCR患者脉络膜血管和基质体积的影响 中心性浆液性脉络膜视网膜病变(CSCR)患者的脉络膜血管和基质 NA NA 深度学习 NA 图像 58只眼(58名患者),其中33只眼接受PC治疗,25只眼接受PDT治疗
303 2024-10-15
A deep learning-based dynamic model for predicting acute kidney injury risk severity in postoperative patients
2023-09, Surgery IF:3.2Q1
研究论文 本文开发了一种基于循环神经网络的动态模型,用于预测术后患者急性肾损伤的风险和严重程度 提出了一个基于循环神经网络的动态模型,能够更精细和动态地建模急性肾损伤状态,并实现更连续和准确的预测 NA 开发和验证一种新的模型,用于预测术后患者急性肾损伤的风险和严重程度 术后急性肾损伤的风险和严重程度 机器学习 肾脏疾病 循环神经网络 RNN 数值数据 42,906名手术患者
304 2024-10-15
A bibliometric analysis of worldwide cancer research using machine learning methods
2023-Jun, Cancer innovation
研究论文 本文通过文献计量分析方法,研究了2011年至2021年间使用机器学习方法进行癌症研究的全球趋势和热点 本文首次对全球范围内使用机器学习方法进行癌症研究的文献进行了全面的文献计量分析,揭示了该领域的研究热点和发展趋势 本文仅基于PubMed数据库中的6206篇文献进行分析,可能未能涵盖所有相关研究 分析全球范围内使用机器学习方法进行癌症研究的最新研究现状、主要研究主题、主题演变、研究合作和潜在研究方向 2011年至2021年间PubMed数据库中收集的6206篇关于使用机器学习方法进行癌症研究的文献 机器学习 癌症 文献计量分析 Latent Dirichlet Allocation 文本 6206篇文献
305 2024-10-15
Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion
2023, Plant phenomics (Washington, D.C.)
研究论文 提出了一种基于密度互斥的半监督葡萄浆果田间计数方法 引入基于密度互斥的辅助任务,利用未标记数据的空间分布模式,并设计了密度差异损失以增强特征表示 未提及 解决葡萄浆果计数中的遮挡问题,提高计数准确性 葡萄浆果 计算机视觉 NA 深度学习 VGG16 图像 田间葡萄浆果数据集
306 2024-10-15
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
2023, Frontiers in human neuroscience IF:2.4Q2
研究论文 本文提出了一种混合迁移学习策略,用于跨受试者的脑电图情绪识别 设计了一种名为Emo-DA的领域自适应学习模块,并结合少量样本微调网络(DFF-Net),显著提高了跨受试者脑电图情绪识别的准确性 未提及 解决跨受试者脑电图情绪识别中的性能下降问题 脑电图信号的情绪识别 机器学习 NA 迁移学习 DFF-Net 脑电图信号 在SEED数据集上达到93.37%的平均识别准确率,在SEED-IV数据集上达到82.32%的平均识别准确率
307 2024-10-15
Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals
2023, Frontiers in plant science IF:4.1Q1
综述 本文综述了人工智能驱动的系统工程在植物源下一代生物制药中的应用 本文提出通过人工智能和合成生物学工具优化植物系统中重组蛋白的表达,以提高产量和稳定性 本文未详细讨论具体的实验验证和实际应用案例 探讨人工智能在植物分子制药中的应用,以提高重组蛋白的产量和稳定性 植物系统中的重组生物制药,包括抗原、抗体、激素、细胞因子、单链可变片段和肽 生物技术 NA 人工智能算法 神经网络、支持向量机、线性回归、高斯过程和回归器集成 蛋白质结构数据 NA
308 2024-10-15
Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: a 60-year review
2023, Frontiers in pharmacology IF:4.4Q1
综述 本文回顾了60年来与中医药系统药理学相关的数据库的多层次进展 本文探讨了计算技术(包括深度学习和基础模型)在推动复杂系统探索和建模方面的新进展,预示着新时代的到来 本文指出了中医药计算药理学研究中的瓶颈问题 探讨中医药系统药理学相关数据库的进展,并展望计算研究的未来方向 中医药配方、草药、成分、靶点、表型等六个关键实体 NA NA 网络分析、深度学习、基础模型 NA NA NA
309 2024-10-15
Instruction-Level Power Side-Channel Leakage Evaluation of Soft-Core CPUs on Shared FPGAs
2023, Journal of hardware and systems security
研究论文 本文研究了在共享FPGA环境中,软核CPU在指令级别的功耗侧信道泄漏问题 本文首次在没有物理访问或昂贵测量设备的环境中分析了指令级别的功耗侧信道泄漏,并展示了在多租户FPGA场景中的泄漏情况 尽管在某些情况下可以识别指令的操作码,但泄漏同一类型指令之间的差异对深度学习模型来说是一个挑战 评估在共享FPGA环境中,软核CPU在指令级别的功耗侧信道泄漏情况 软核CPU在指令级别的功耗侧信道泄漏 计算机视觉 NA 功耗侧信道分析 深度学习模型 功耗侧信道数据 NA
310 2024-10-14
An open-source dataset for arabic fine-grained emotion recognition of online content amid COVID-19 pandemic
2023-Dec, Data in brief IF:1.0Q3
研究论文 本文介绍了一个名为ArPanEmo的开源数据集,用于在COVID-19疫情期间对阿拉伯语在线内容的细粒度情感识别 该数据集是首个专注于沙特方言并涵盖COVID-19相关话题的阿拉伯语情感识别数据集,包含11,128条手动标注的在线帖子 数据集仅涵盖沙特方言和COVID-19相关话题,可能不适用于其他方言或话题 旨在丰富阿拉伯语自然语言处理资源,并帮助开发机器学习和深度学习工具以识别文本中的情感 阿拉伯语在线内容的细粒度情感识别 自然语言处理 NA NA NA 文本 11,128条在线帖子
311 2024-10-14
SPACEL: deep learning-based characterization of spatial transcriptome architectures
2023-Nov-22, Nature communications IF:14.7Q1
研究论文 本文介绍了一种基于深度学习的空间转录组学数据分析方法SPACEL,用于解析和整合多个空间转录组切片 SPACEL通过三个模块实现细胞类型反卷积、空间域识别和三维组织架构构建,显著优于现有方法 NA 开发一种能够有效分析和整合空间转录组学数据的方法 空间转录组学数据 机器学习 NA 深度学习 多层感知器、图卷积网络、对抗学习算法 空间转录组数据 多种组织和空间转录组技术数据
312 2024-10-14
Just-in-time deep learning for real-time X-ray computed tomography
2023-Nov-16, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种在实时X射线计算机断层扫描中使用深度学习进行即时学习的策略 开发了即时学习策略,利用连续重建的空间-时间连续性在实验期间训练和部署较小的深度神经网络 即时学习策略在科学环境中可能面临训练数据不足和实验设置不确定性的挑战 扩展实时重建功能,通过图像处理和分析组件增强实时X射线断层扫描 实时X射线断层扫描中的深度神经网络集成 计算机视觉 NA 深度神经网络 深度神经网络 图像 使用来自真实动态实验的X射线数据进行训练
313 2024-10-14
Ensemble classification of integrated CT scan datasets in detecting COVID-19 using feature fusion from contourlet transform and CNN
2023-11-16, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于机器学习和深度学习的自动化方法,用于通过融合轮廓变换和卷积神经网络的特征来检测COVID-19 本文创新性地使用了轮廓变换和卷积神经网络的特征融合方法,并结合二进制差分进化算法进行特征优化,最终通过集成学习方法提高了检测准确率 NA 开发一种自动化方法,通过CT扫描图像早期检测COVID-19,以降低死亡率 COVID-19的CT扫描图像 计算机视觉 COVID-19 轮廓变换、卷积神经网络、二进制差分进化算法 集成学习 图像 11,407张CT扫描图像,其中7397张为COVID-19图像,4010张为正常图像
314 2024-10-14
Deep learning workflow for the inverse design of molecules with specific optoelectronic properties
2023-Nov-16, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种用于设计具有特定光电特性的分子的深度学习工作流程 提出了结合密度泛函紧束缚方法、图卷积神经网络和掩码语言模型的迭代深度学习工作流程,以加速分子设计 NA 开发一种加速具有特定光电特性的分子设计的计算方法 具有特定光电特性的新型分子 机器学习 NA 密度泛函紧束缚方法 图卷积神经网络 分子数据 NA
315 2024-10-14
Automated crystal system identification from electron diffraction patterns using multiview opinion fusion machine learning
2023-Nov-14, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文开发了一种基于多视角意见融合机器学习的框架,用于从任意方向的电子衍射图案中自动识别晶体系统 提出了一个基于卷积神经网络和证据深度学习的框架,通过量化和融合多视角预测的不确定性,实现了对任意方向电子衍射图案的晶体系统分类 NA 加速高吞吐量材料数据分析实验 电子衍射图案中的晶体系统识别 机器学习 NA 卷积神经网络 CNN 图像 NA
316 2024-10-14
Integrated Molecular Modeling and Machine Learning for Drug Design
2023-Nov-14, Journal of chemical theory and computation IF:5.7Q1
研究论文 本文总结了将分子建模与机器学习相结合以开发计算工具用于调节剂设计的最新努力 提出了基于AlphaSpace的口袋引导理性设计方法,用于靶向蛋白质-蛋白质相互作用,以及用于蛋白质-配体对接和虚拟筛选的delta机器学习评分函数,并使用最先进的深度学习模型预测基于分子力学优化几何结构的计算和实验分子性质 讨论了当前方法的局限性,并指出了未来发展的有前景的方向 开发计算工具以加速新药的研发过程 蛋白质-蛋白质相互作用、蛋白质-配体对接、虚拟筛选以及分子性质预测 机器学习 NA 分子建模、机器学习 深度学习模型 分子几何结构 NA
317 2024-10-14
A Deep Learning Approach for Automatic and Objective Grading of the Motor Impairment Severity in Parkinson's Disease for Use in Tele-Assessments
2023-Nov-06, Sensors (Basel, Switzerland)
研究论文 研究使用深度学习方法通过低成本可穿戴传感器自动客观评估帕金森病患者的运动障碍严重程度 通过扩展训练数据集和使用无监督预训练权重,提高了运动障碍分类的准确性 研究结果仅限于特定的运动任务,未涵盖所有可能的运动障碍评估 探索深度学习在远程评估帕金森病患者运动障碍严重程度中的应用 帕金森病患者的运动障碍严重程度 机器学习 神经退行性疾病 深度学习 XceptionTime 运动数据 包括帕金森病患者和健康老年人的运动数据
318 2024-10-14
Unsupervised deep learning registration model for multimodal brain images
2023-Nov, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本文提出了一种基于卷积神经网络的无监督深度学习模型,用于多模态脑图像的配准 本文的创新点在于使用无监督学习方法进行多模态脑图像的配准,避免了传统监督学习方法对大量标注数据的依赖和可能的偏差 本文的局限性在于仅使用了CT和MR图像进行实验,未来可以扩展到更多模态的图像 本文的研究目的是开发一种高效且准确的多模态脑图像配准方法,以支持临床图像引导的干预 本文的研究对象是脑部CT和MR图像的配准 计算机视觉 NA 卷积神经网络 卷积神经网络 图像 1100对CT/MR切片,来自110名有/无肿瘤的神经心理患者
319 2024-10-14
Deep Learning for Genomics: From Early Neural Nets to Modern Large Language Models
2023-Nov-01, International journal of molecular sciences IF:4.9Q2
review 本文从基因组学角度简要讨论了不同深度学习模型的优势,以便为每个特定任务选择合适的基于深度学习的架构,并强调了开发基因组学深度学习架构的实际考虑 本文回顾了深度学习在基因组学研究各个方面的应用,并指出了当前的挑战和未来基因组学应用的潜在研究方向 NA 探讨深度学习在基因组学中的应用及其未来发展方向 不同深度学习模型在基因组学任务中的适用性 machine learning NA high-throughput sequencing NA genomic data NA
320 2024-10-14
Deep Learning Framework for Liver Segmentation from T1-Weighted MRI Images
2023-Nov-01, Sensors (Basel, Switzerland)
研究论文 研究提出了一种用于从T1加权MRI图像中分割肝脏的深度学习框架 提出了一种新的级联网络,用于分割轴向肝脏切片,并在肝脏分割任务中表现优于现有方法 研究仅使用了20名患者的647张MR切片数据,样本量较小 开发一种自动分割肝脏的深度学习框架,以辅助临床诊断 肝脏在T1加权MRI图像中的分割 计算机视觉 NA MRI CNN 图像 20名患者,647张MR切片
回到顶部