深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202301-202312] [清除筛选条件]
当前共找到 2257 篇文献,本页显示第 341 - 360 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
341 2025-04-17
Sequence basis of transcription initiation in human genome
2023-Jun-29, bioRxiv : the preprint server for biology
研究论文 本研究通过深度学习启发的可解释建模方法,揭示了人类基因组中转录起始的序列基础 提出了一个统一模型,在碱基对水平上解释了转录起始的序列基础,并揭示了大多数人类启动子的简单规则 NA 理解人类基因组中转录起始位点的序列模式和规则 人类基因组和241种哺乳动物基因组 基因组学 NA 深度学习启发的可解释建模方法 深度学习 基因组序列数据 241种哺乳动物基因组和小鼠转录起始位点数据
342 2025-04-17
Massively parallel characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in the developing human cortex
2023-Feb-16, bioRxiv : the preprint server for biology
研究论文 该研究通过大规模并行报告实验,分析了人类发育中皮质和脑器官样体中102,767个序列的调控活性,包括皮质发育中的细胞类型特异性区域和精神疾病相关的单核苷酸变异 首次在人类原代细胞和脑器官样体中大规模并行分析调控元件的活性,并利用深度学习解码增强子活性的序列基础和上游调控因子 研究主要关注发育中的人类皮质,可能不适用于其他脑区或发育阶段 建立人类神经元发育中功能性基因调控元件和变异的全面目录 人类发育中皮质和脑器官样体中的调控元件 基因组学 精神疾病 大规模并行报告实验(MPRA), 深度学习 深度学习模型 基因组序列数据 102,767个序列
343 2025-04-13
Development and Validation of a Deep Learning Algorithm to Differentiate Colon Carcinoma From Acute Diverticulitis in Computed Tomography Images
2023-01-03, JAMA network open IF:10.5Q1
研究论文 开发并验证了一种深度学习算法,用于在CT图像中区分结肠癌和急性憩室炎 提出了一种3D卷积神经网络(CNN)模型,能够显著提高放射科医生在区分结肠癌和急性憩室炎方面的诊断准确性 研究样本仅包括2005年至2020年间接受手术的患者,可能无法代表所有病例 开发并评估能够区分结肠癌和急性憩室炎的AI支持系统 结肠癌和急性憩室炎患者 数字病理学 结肠癌/急性憩室炎 3D卷积神经网络 3D CNN CT图像 585名患者(267例AD,318例CC)
344 2025-04-12
RApid Throughput Screening for Asymptomatic COVID-19 Infection With an Electrocardiogram: A Prospective Observational Study
2023-Dec, Mayo Clinic proceedings. Digital health
研究论文 评估神经网络使用便携设备获取的心电图(ECG)识别无症状SARS-CoV-2感染的能力 使用便携式、智能手机兼容的人工智能心电图(POC AI-ECG)设备进行无症状SARS-CoV-2感染的筛查 POC AI-ECG算法在检测无症状SARS-CoV-2感染方面效果不佳,无法有效区分阳性与阴性参与者的心电图 评估人工智能心电图在检测无症状SARS-CoV-2感染中的准确性 2827名患者 数字病理学 COVID-19 人工智能心电图(AI-ECG) 深度学习模型 心电图数据 2827名患者(48%女性,79%白人,7%有既往COVID-19感染史)
345 2025-04-12
Deep Learning for Computed Tomography Assessment of Hepatic Fibrosis and Cirrhosis: A Systematic Review
2023-Dec, Mayo Clinic proceedings. Digital health
系统综述 本文系统综述了深度学习在计算机断层扫描评估肝纤维化和肝硬化中的应用 首次系统评估深度学习算法在CT图像分析肝纤维化和肝硬化诊断中的准确性 研究队列和方法学存在异质性,限制了这些研究的普适性 评估深度学习算法在肝纤维化和肝硬化CT诊断中的准确性 计算机断层扫描(CT)图像 数字病理 肝纤维化和肝硬化 深度学习 图像分类算法和图像分割算法 CT图像 6项符合纳入标准的研究(3877项初步筛选研究)
346 2025-04-12
Optimizing Storage and Computational Efficiency: An Efficient Algorithm for Whole Slide Image Size Reduction
2023-Sep, Mayo Clinic proceedings. Digital health
研究论文 开发了一种用于减少全切片图像(WSI)大小的图像处理算法,以提高存储和计算效率 提出了一种新颖的图像处理算法,能够在不改变组织区域图像分辨率的情况下,去除WSI中不需要的背景并将组织部分组装成更小的WSI 研究仅针对Barrett食管的不同发育不良阶段的组织切片,未验证在其他类型组织上的适用性 优化全切片图像的存储、传输和分析效率 非发育不良Barrett食管、低度发育不良和高度发育不良的组织学切片 数字病理学 Barrett食管 图像处理算法 NA 图像 1992年1月至2020年9月期间使用Aperio AT2扫描仪数字化的组织切片
347 2025-04-12
Tissue response curve-shape analysis of dynamic glucose-enhanced and dynamic contrast-enhanced magnetic resonance imaging in patients with brain tumor
2023-06, NMR in biomedicine IF:2.7Q1
research paper 该研究开发了一种基于组织响应曲线形状的动态葡萄糖增强(DGE)MRI分析方法,并与动态对比增强(DCE)MRI进行比较,以评估其在脑肿瘤患者中的应用 提出了一种基于深度学习的DGE组织响应曲线形状分析方法,并创建了彩色编码的'曲线图'来直观展示不同曲线类型的空间分布 研究样本量较小(仅11名患者),且DGE和DCE的增强模式在时间和空间上并不完全一致 比较DGE MRI和DCE MRI在脑肿瘤诊断中的信息价值 疑似胶质瘤患者的脑组织 digital pathology brain tumor dynamic glucose-enhanced MRI, dynamic contrast-enhanced MRI deep learning MRI图像 11名疑似胶质瘤患者
348 2025-04-11
Quality assessment of VHH models
2023, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 本研究评估和比较了不同建模方法在预测重链抗体(VHH)结构质量方面的表现 比较了传统同源建模与深度学习建模方法(如AlphaFold 2和NanoNet)在VHH结构预测中的表现,并通过分子动力学模拟评估了预测模型的动态特性 研究中使用的实验结构数据有限,且动态特性评估仅针对一个VHH模型进行 评估不同建模方法在预测重链抗体(VHH)结构质量方面的准确性 重链抗体(VHH)的结构模型 结构生物学 NA 同源建模、深度学习建模(AlphaFold 2、NanoNet)、分子动力学模拟 Modeller、ModWeb、SwissModel、RoseTTAfold、AlphaFold 2、NanoNet 蛋白质序列和结构数据 约一千个公开可用的VHH实验结构
349 2025-04-10
Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting
2023, PloS one IF:2.9Q1
research paper 该研究利用先进的深度学习模型预测SARS-CoV-2病例,评估了多种模型的性能,并确定了最适合马来西亚特定情况的模型架构 研究评估了多种深度学习模型(如LSTM、Bi-directional LSTM、CNN等)在SARS-CoV-2病例预测中的性能,并优化了模型以提高预测准确性 研究可能受限于数据集的覆盖范围和时效性,且模型性能可能因地区差异而有所不同 开发高效且精确的SARS-CoV-2病例预测工具,以指导公共卫生政策和措施 SARS-CoV-2病例数据、人口统计数据及相关社会经济因素 machine learning COVID-19 深度学习模型优化 LSTM, Bi-directional LSTM, CNN, CNN-LSTM, Multilayer Perceptron, GRU, RNN 结构化数据(确诊病例数据、人口统计数据、社会经济因素) NA
350 2025-04-07
De novo design of luciferases using deep learning
2023-02, Nature IF:50.5Q1
研究论文 本文介绍了一种基于深度学习的'家族级幻觉'方法,用于设计具有选择性催化氧化化学发光的人工荧光素酶 使用深度学习生成大量理想化的蛋白质结构,包含多样化的口袋形状和设计序列,从而创造出高活性和特异性的生物催化剂 方法依赖于生成的蛋白质结构和设计序列的准确性,可能受限于当前深度学习模型的预测能力 从头设计具有高活性和特异性的荧光素酶 人工荧光素酶及其催化底物二苯基特拉嗪和2-脱氧腔肠素 机器学习 NA 深度学习 NA 蛋白质结构数据 NA
351 2025-04-06
Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces
2023-11, IEEE transactions on medical imaging IF:8.9Q1
research paper 提出了一种两阶段几何深度学习框架,用于自动检测牙齿-牙龈修剪线 提出了一个两阶段框架,包括修剪线提议网络(TLP-Net)和修剪线细化网络(TLR-Net),能够充分利用高分辨率牙科表面数据 未提及具体样本量或临床验证的广泛性 自动检测牙齿-牙龈修剪线以支持牙科治疗规划和矫正器3D打印 牙齿-牙龈修剪线 computer vision NA 几何深度学习 U-Net, LDDMM 3D牙科表面数据 NA
352 2025-04-06
DensePPI: A Novel Image-Based Deep Learning Method for Prediction of Protein-Protein Interactions
2023-10, IEEE transactions on nanobioscience IF:3.7Q3
研究论文 提出了一种基于图像的深度学习方法DensePPI,用于预测蛋白质-蛋白质相互作用 引入了一种颜色编码方案,将氨基酸的双字母相互作用可能性嵌入RGB颜色空间,以增强学习和预测任务 NA 预测蛋白质-蛋白质相互作用,以理解生物行为并识别疾病关联 蛋白质对 计算机视觉 NA 深度学习 CNN 图像 550万张128×128的子图像,来自近3.6万对相互作用和3.6万对非相互作用的基准蛋白质对
353 2025-04-06
Temporal Convolutional Network-Based Signal Detection for Magnetotactic Bacteria Communication System
2023-10, IEEE transactions on nanobioscience IF:3.7Q3
研究论文 本文提出了一种改进的时间卷积网络(TCN),用于基于磁趋细菌(MTB)的分子通信系统中的信号检测 提出了一种改进的TCN模型,用于MTB通信系统中的信号检测,展示了优于现有深度学习和次优MAP检测器的性能 在性能上仍不及最优MAP检测器,且在某些情况下与BiLSTM检测器表现相似 解决分子通信系统中由于符号间干扰和外部噪声导致的信号检测难题 磁趋细菌(MTB)作为信息载体的分子通信系统 机器学习 NA 深度学习(DL) TCN(时间卷积网络) 信号数据 NA
354 2025-04-06
Ultrasound Frame-to-Volume Registration via Deep Learning for Interventional Guidance
2023-09, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
研究论文 本文提出了一种基于深度学习的超声帧到体积配准方法,用于前列腺癌活检的图像引导干预 提出了一种新颖的超声帧到体积配准(FVReg)流程,通过深度神经网络实现全自动配准,无需外部跟踪设备 未提及具体局限性 开发自动图像配准系统,用于2D超声帧与3D MR图像的融合导航 前列腺癌活检的临床数据集 计算机视觉 前列腺癌 深度学习 深度神经网络 2D超声帧和3D MR图像 618名受试者
355 2025-04-06
WVDL: Weighted Voting Deep Learning Model for Predicting RNA-Protein Binding Sites
2023 Sep-Oct, IEEE/ACM transactions on computational biology and bioinformatics
研究论文 提出一种加权投票深度学习模型(WVDL),用于预测RNA-蛋白质结合位点 使用加权投票方法整合CNN、LSTM和ResNet三种基本分类器模型,提高模型性能 NA 预测RNA-蛋白质结合位点 RNA-蛋白质结合位点 机器学习 NA 深度学习 CNN, LSTM, ResNet RNA序列数据 公开数据集RBP-24
356 2025-04-06
The Big Bang of Deep Learning in Ultrasound-Guided Surgery: A Review
2023-09, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
review 本文综述了深度学习在超声引导手术中的应用,总结了当前趋势并提出了未来研究方向 全面回顾了深度学习在超声引导手术中的应用,并提出了未来研究方向 未提及具体实验数据或样本量,可能缺乏实证支持 探讨深度学习在超声引导手术中的应用及其潜力 超声引导手术中的图像处理技术 digital pathology NA 深度学习算法 DL image NA
357 2025-04-06
Domain Agnostic Post-Processing for QRS Detection Using Recurrent Neural Network
2023-08, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于循环神经网络(RNN)的领域无关后处理方法,用于改进QRS检测算法中的R峰定位 首次提出使用RNN模型从QRS分割深度学习模型的输出中学习所需的后处理,实现领域无关的自动化后处理 在某些情况下(使用浅层QRS分割模型和TWADB数据集时)性能略低于领域特定后处理方法(差距≤2%) 改进QRS检测算法中的后处理步骤,提高模型的泛化能力 QRS检测算法的后处理流程 机器学习 心血管疾病 RNN RNN 信号数据 NA
358 2025-04-06
CAT: Constrained Adversarial Training for Anatomically-Plausible Semi-Supervised Segmentation
2023-08, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种名为CAT的约束对抗训练方法,用于生成解剖学上合理的半监督医学图像分割结果 通过对抗训练策略和Reinforce算法解决非可微分解剖约束的集成问题,能够考虑连通性、凸性和对称性等复杂解剖约束 未提及具体在哪些临床数据集上测试,以及与其他方法的详细对比结果 提高医学图像分割的解剖学合理性 医学图像分割 数字病理 NA 对抗训练、Reinforce算法 深度学习模型 医学图像 合成数据和四个临床相关数据集(未说明具体样本量)
359 2025-04-06
Attributed Abnormality Graph Embedding for Clinically Accurate X-Ray Report Generation
2023-08, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种新的知识图结构——属性异常图(ATAG),用于提高X射线报告生成的临床准确性 引入ATAG结构自动构建细粒度异常图,结合图注意力网络和分层注意力机制提升报告生成质量 NA 提高X射线报告生成的临床准确性 X射线图像及其报告 计算机视觉 NA 图注意力网络(GAT) encoder-decoder架构 X射线图像和文本报告 基于基准数据集进行实验
360 2025-04-06
SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization
2023-08, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种名为SDMT的空间依赖多任务Transformer网络,用于3D膝关节MRI的分割和标志点定位 利用分割结果和标志点位置的空间依赖性相互促进两个任务,设计了任务混合多头注意力机制和动态权重多任务损失函数 仅在自建的3D膝关节MRI多任务数据集上进行了验证 开发一种能够同时完成膝关节MRI分割和标志点定位的多任务深度学习模型 3D膝关节MRI图像 计算机视觉 膝关节疾病 深度学习 Transformer 3D MRI图像 未明确说明样本数量(使用自建数据集)
回到顶部